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Fully automate the tedious CIMT (carotid intima-media thickness) video interpretation for the first time by hybridizing 
deep learning with novel pre- and post-processing.   

 N. Tajbakhsh, S. Gurudu, and J. Liang. Automated polyp detection in colonoscopy videos using context-aware 
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United Snakes” is a general-purpose, interactive image segmentation and analysis tool with many applications. It unifies 
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Fig. 1: Comparing our Fixed-Point GAN with StarGAN [5], the current state of the art in multi-domain image-to-image translation, by
translating images into five domains. Combining the domains may yield a same-domain (e.g., black to black hair) or cross-domain (e.g.,
black to blond hair) translation. For clarity, same-domain translations are framed in red for StarGAN and in green for Fixed-Point GAN.
As illustrated, during cross-domain translations, and especially during same-domain translations, StarGAN generates artifacts: introducing
a mustache (Row 1, Col. 2; light blue arrow), changing the face colors (Rows 2–5, Cols. 2–6), adding more hair (Row 5, Col. 2; yellow
circle), and altering the background (Row 5, Col. 3; blue arrow). Our Fixed-Point GAN overcomes these drawbacks via fixed-point
translation learning (see Sec. 3) and leads to a framework for disease detection and localization with image-level annotation (see Fig. 2).

Abstract

Generative adversarial networks (GANs) have brought
about a revolution in image-to-image translation. Now, can
we train a GAN to remove an object, if present, from an
image while otherwise preserving the image? Specifically,
can a GAN “heal” a patient virtually by turning his image,
diseased or healthy, into a healthy one, so that diseased re-
gions could be revealed by subtracting those two images?
Such a task requires a GAN to identify a minimal subset
of target pixels for domain translation, an ability that we
call fixed-point translation and that no GAN is equipped
with yet. Therefore, we propose a new GAN, called Fixed-
Point GAN, trained by (1) supervising same-domain trans-

lation through a conditional identity loss, and (2) regular-
izing cross-domain translation through a modified loss of
adversarial, domain classification, and cycle consistency.
Based on fixed-point translation, we further derive a novel
framework for disease detection and localization using only
image-level annotation. Qualitative and quantitative eval-
uations demonstrate that the proposed method outperforms
StarGAN [5] in image-to-image translation and is superior
in disease detection and localization by a large margin. Our
method has the potential to exert significant clinical im-
pact on computer-aided diagnosis in medical imaging, since
training our Fixed-Point GAN requires only image-level an-
notation, which could be achieved by analyzing radiologi-
cal reports via natural language processing.
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Fig. 2: [Better viewed on-line in color and zoomed in for details] Comparing Fixed-Point GAN with StarGAN for detecting and localizing
eyeglasses and diseases with image-level annotation. Taking detecting diseases as an example, our idea is to translate any image, diseased
or healthy, into a healthy image, so that diseased regions could be revealed by subtracting those two images. By fixed-point translation
learning, our Fixed-Point GAN aims to preserve healthy images during the translation, thereby few differences between the generated
(healthy) images and the original (healthy) images are observed in the difference maps (columns framed in red). For diseased images,
thanks to the transformation learning from diseased images to healthy ones, disease locations are revealed in the difference maps (columns
framed in yellow). For comparison, the localized diseased regions are superimposed on the original images (Loc. Columns), showing
Fixed-Point GAN is more precise than CAMs [21] and VA-GAN [2] in localizing eyeglasses and diseases (bottom row; detailed in Sec. 5).

1. Introduction
Generative adversarial networks (GANs) [6] have proven
to be powerful in image-to-image translation, such as
changing the hair color, facial expression, and makeup of a
person [5, 3], and converting MRI scans to CT scans [19].
Now, we start seeking to answer a generic question: Can
GANs remove an object, if present, from an image while
otherwise preserving the image content? Specifically, can
we train a GAN to remove eyeglasses from any image of
face with eyeglasses while maintaining unchanged those
without eyeglasses? Or, can a GAN “heal” a patient on his
medical image virtually1? Such a task appears simple, but it
actually demands the following four stringent requirements:
• Req. 1: The GAN must handle unpaired images. It may

be too arduous to collect a perfect pair of photos of the
same person with and without eyeglasses, and it would
be too late to acquire a healthy image of a sick patient.
1Virtual healing (see Fig. 6 in Appendix) turns an image (diseased or

healthy) into a healthy image, thereby subtracting the two images reveals
diseased regions.

• Req. 2: The GAN must require no source domain la-
bel when translating an image into a target domain (i.e.,
source-domain-independent translation). For instance, a
GAN trained for virtual healing aims to turn any image,
with unknown health status, into a healthy one.
• Req. 3: The GAN must conduct an identity transforma-

tion for same-domain translation. For virtual healing, the
GAN should leave a healthy image intact, injecting nei-
ther artifacts nor new information into the image.
• Req. 4: The GAN must perform a minimal image trans-

formation for cross-domain translation. Changes should
be applied to only the image attributes directly relevant
to the translation task, with no impact on unrelated at-
tributes. For instance, removing eyeglasses should not
affect the remainder of the image (e.g., the hair, face
color, and background), or removing diseases from a dis-
eased image should not impact the region of the image
labeled as normal.

Currently, no single image-to-image translation method can
meet all aforementioned requirements. The conventional



GANs for image-to-image translation [9], although suc-
cessful, require paired images. CycleGAN [23] mitigates
this limitation through cycle consistency, but it still requires
two dedicated generators for each pair of image domains.
Facing a scalability issue due to dedicated generators, Cy-
cleGAN also fails to support source-domain-independent
translation: selecting the suitable generator requires labels
for both the source and target domains. StarGAN [5] over-
comes both limitations by learning one single generator for
all domain pairs of interest. However, StarGAN has its
own shortcomings. First, StarGAN tends to make unnec-
essary changes during cross-domain translation. As illus-
trated in Fig. 1, StarGAN tends to alter the face color while
the goal of domain translation is to change the gender, age,
or hair color in images from the CelebFaces dataset [15].
Second, StarGAN fails to competently handle same-domain
translation. Referring to examples framed with the red
boxes in Fig. 1, StarGAN needlessly adds a mustache to
the face in Row 1, and unnecessarily alters the hair color
in Rows 2–5, where an identity transformation is simply
desired. These shortcomings may be acceptable for image-
to-image translation in natural images, but in sensitive do-
mains, such as medical imaging, they may lead to grievous
consequences—unnecessary changes and artifacts may re-
sult in misdiagnosis. Furthermore, overcoming the above
limitations is essential for adapting GANs for object/disease
detection, localization, segmentation—and removal.

Therefore, we propose a novel GAN. We call it Fixed-
Point GAN for its new fixed-point2 translation ability,
which allows the GAN to identify a minimal subset of pix-
els for domain translation. To achieve this ability, we devise
a new training scheme to promote the fixed-point translation
during training (Fig. 3-3) by (1) supervising same-domain
translation through an additional conditional identity loss
(Fig. 3-3B), and (2) regularizing cross-domain translation
through a modified loss of adversarial (Fig. 3-3A), domain
classification (Fig. 3-3A), and cycle consistency (Fig. 3-
3C). Owing to its fixed-point translation ability, Fixed-Point
GAN performs a minimal transformation for cross-domain
translation and strives for an identity transformation for
same-domain translation. Consequently, Fixed-Point GAN
not only achieves better image-to-image translation for nat-
ural images but also offers a novel framework for disease
detection and localization with only image-level annotation.
Our experiments demonstrate that Fixed-Point GAN signif-
icantly outperforms StarGAN over multiple datasets for the
tasks of image-to-image translation, disease detection, and
disease localization. Formally, we make the following con-
tributions:

1. We introduce a new concept: fixed-point translation,
2Mathematically, x is a fixed point of function f(·) if f(x) = x. We

borrow the term to describe the pixels to be preserved when applying the
GAN translation function.

leading to a new GAN: Fixed-Point GAN.
2. We devise a new scheme to train fixed-point translation

by supervising same-domain translation and regulariz-
ing cross-domain translation.

3. We show that Fixed-Point GAN outperforms the orig-
inal StarGAN for the task of image-to-image transla-
tion in both natural and medical images.

4. We derive a novel method for disease detection and lo-
calization using image-level annotation based on fixed-
point translation learning.

5. We demonstrate that our disease detection and local-
ization method based on Fixed-Point GAN is superior
to its counterpart based on StarGAN.

Our method has the potential to exert important clinical im-
pact on computer-aided diagnosis in medical imaging, be-
cause training our Fixed-Point GAN requires only image-
level annotation. Obtaining image-level annotation is much
easier than lesion-level annotation, as a large number of
diseased and healthy images can be collected from the pic-
ture archiving and communication systems, and labeled at
the image level by analyzing their radiological reports with
NLP. With the availability of large databases of medical im-
ages and their corresponding radiological reports, we envi-
sion not only that Fixed-Point GAN will detect and localize
diseases more accurately, but also that it may eventually be
able to “cure”1, thus segment diseases in the future.

2. Related Work
The literature of GANs [6] for image-to-image translation
is wide and deep [9, 23, 10, 24, 14, 20, 5, 12]; therefore we
limit our discussion to only the most relevant works. Cy-
cleGAN [23] has made a breakthrough in unpaired image-
to-image translation via cycle consistency. The cycle con-
sistency has proven to be effective in preserving object
shapes in translated images, but it may not preserve other
image attributes, such as color; therefore, when convert-
ing Monet’s painting to photos (a cross-domain transla-
tion), Zhu et al. [23] imposes an extra identity loss to pre-
serve the colors of input images. However, the identity loss
cannot be used in cross-domain translation in general, as
it would limit the transformation power. For instance, it
would make it impossible to translate black hair to blond
hair. Therefore, unlike CycleGAN, we conditionally incor-
porate the identity loss only during fixed-point translation
learning for same-domain translations. More severely, dur-
ing inference, CycleGAN requires that the source domain
be provided, thereby violating our Req. 2 as discussed in
Sec. 1 and rendering it unsuitable for our purpose. Star-
GAN [5] empowers a single generator with a capability
for multi-domain image-to-image translation, and does not
require the source domain of the input image at inference
time. However, StarGAN has its own shortcomings, which



Fig. 3: Fixed-Point GAN training scheme. Like StarGAN, our discriminator learns to distinguish real/fake images (1A) and classify
the domains of input images (1B). However, unlike StarGAN, our generator learns to perform not only cross-domain translations via
transformation learning (2A–B), but also same-domain translations via fixed-point translation learning (3A–C), which is essential for
mitigating the limitations of StarGAN (Fig. 1) and realizing disease detection and localization using only image-level annotation (Fig. 2).

violate Reqs. 3 and 4 as discussed in Sec. 1. Our Fixed-
Point GAN overcomes StarGAN’s shortcomings, not only
improving image-to-image translation but also opening the
door to an innovative use of the generator as disease detec-
tor and localizer.

The literature regarding GANs for disease detection
and localization in medical images is sparse [4, 2]. As far
as we know, we are among the first to exploit GANs trained
in image-to-image translation for disease detection and lo-
calization with image-level annotation. Chen et al. [4] train
an autoencoder adversarially on only healthy brain images
to detect brain lesions. The results reported by the authors
show that the reconstructed brain image from an abnor-
mal case cannot preserve its original anatomical structure.
This can be explained because, essentially, their method
learns only one translation: healthy to healthy. By contrast,
our Fixed-Point GAN learns all 4 translations of diseased
and healthy domains. Therefore, when translating an im-
age (diseased or healthy) to a healthy version, Fixed-Point
GAN preserves brain anatomy and leaves the fine details of
normal brain structures intact, yielding cleaner difference
maps (see Sec. 5.2 for details). Baumgartner et al. [2] de-
veloped VA-GAN to learn the difference between a healthy
brain and one affected by Alzheimer’s disease. Although
unpaired, VA-GAN requires that all images be registered.
Without registration, it cannot preserve the brain structure
as shown at the bottom right in Fig. 2. Furthermore, it re-
quires the source-domain label at inference time, thus vio-
lating our Req. 2 as listed in Sec. 1.

3. Method
In the following, we present a high-level overview of

Fixed-Point GAN, followed by a detailed mathematical de-
scription of each individual loss function.

Like StarGAN, our discriminator is trained to classify an
image as real/fake and its associated domain (Fig. 3-1). In
our new training scheme, the generator learns both cross-
and same-domain translation, which differs from StarGAN,
wherein the generator only learns the former. Mathemati-

cally, for any input x from domain cx and target domain cy ,
the generator in StarGAN learns to perform cross-domain
translation (cx 6= cy), G(x, cy) −→ y′, where y′ is the im-
age in domain cy . The generator in Fixed-Point GAN, in
addition to learning the cross-domain translation, learns to
perform the same-domain translation as G(x, cx) −→ x′.

Our new fixed-point translation learning (Fig. 3-3) not
only enables same-domain translation but also regularizes
cross-domain translation (Fig. 3-2) by encouraging the gen-
erator to find a minimal transformation function, thereby
penalizing changes unrelated to the present domain trans-
lation task. Trained for only cross-domain image trans-
lation, StarGAN cannot benefit from such regularization,
resulting in many artifacts as illustrated in Fig. 1. Con-
sequently, our new training scheme offers three advan-
tages: (1) reinforced same-domain translation, (2) regu-
larized cross-domain translation, and (3) source-domain-
independent translation. To realize these advantages, we
define the loss functions of Fixed-Point GAN as follows:
Adversarial Loss. In the proposed method, the generator
learns the cross- and same-domain translations. To ensure
the generated images look realistic in both scenarios, the
adversarial loss is updated as follows:

Ladv =
∑

c∈{cx,cy}

Ex,c[log (1−Dreal/fake(G(x, c)))]

+ Ex[logDreal/fake(x)]

(1)

Domain Classification Loss. The adversarial loss ensures
the generated images look realistic, but it cannot guarantee
domain correctness. As a result, the discriminator is trained
with an additional domain classification loss, which forces
the generated images to be of the correct domain. The do-
main classification loss for the discriminator is identical to
that of StarGAN,

Lr
domain = Ex,cx [− logDdomain(cx|x)] (2)

but we have updated the domain classification loss for the
generator to account for both same- and cross-domain trans-



lations, ensuring that the generated image is from the cor-
rect domain in both scenarios:

Lf
domain =

∑
c∈{cx,cy}

Ex,c[− logDdomain(c|G(x, c))] (3)

Cycle Consistency Loss. Optimizing the generator with
only the adversarial loss has multiple possible but random
solutions. The additional cycle consistency loss (Eq. 4)
helps the generator to learn a transformation that can pre-
serve enough input information, such that the generated im-
age can be translated back to original domain. Our modified
cycle consistency loss ensures that both cross- and same-
domain translations are cycle consistent.

Lcyc = Ex,cx,cy [||G(G(x, cy), cx)− x||1] +
Ex,cx [||G(G(x, cx), cx)− x||1]

(4)

Conditional Identity Loss. StarGAN [5] during training
focuses on translating the input image to different target do-
mains. This strategy cannot penalize the generator when it
changes aspects of the input that are irrelevant to match tar-
get domains (Fig. 1). Beside learning a translation to differ-
ent domains, we force the generator using the conditional
identity loss (Eq. 5) to preserve the domain identity while
translating the image to the source domain. This also helps
the generator learn a minimal transformation for translating
the input image to the target domain.

Lid =

{
0, c = cy

Ex,c[||G(x, c)− x||1], c = cx
(5)

Full Objective. Combining all losses, the final full ob-
jective function for discriminator and generator can be de-
scribed by Eq. 6 and Eq. 7, respectively.

LD = −Ladv + λdomainLr
domain (6)

LG = Ladv + λdomainLf
domain + λcycLcyc + λidLid (7)

where λdomain, λcyc, and λid determine the relative impor-
tance of the domain classification loss, cycle consistency
loss, and conditional identity loss, respectively. Tab. 1 sum-
marize the loss functions of Fixed-Point GAN.

4. Implementation
We revise adversarial loss (Eq. 1) based on the Wasser-

stein GAN [1] objective by adding gradient penalty [7] to
stabilize the training. The gradient penalty coefficient is
set to 10 for all experiments. Values for λdomain, λcyc is
used 1 and 10 respectively for all experiments. λid is set to
10 for CelebA, 0.1 for BRATS 2013, and 1 for PE dataset.
200K iteration is found to be sufficient for CelebA and PE
dataset where BRAT 2013 requires 300K iteration for gen-
erating good quality images. For a fair comparison, we use

Tab. 1: Loss functions in Fixed-Point GAN. Terms inherited from
StarGAN are in black, while highlighted in blue are our modifica-
tions to mitigate StarGAN’s limitations (Fig. 1) and realize disease
detection and localization using image-level annotation (Fig. 2).

the same generator and discriminator architectures as the
public implementation of StarGAN. All models are trained
using the Adam optimizer with learning rate 1e−4 for both
generator and discriminator across all experiments.

Following [2], we slightly change the architecture of
the generator to predict a residual (delta) map rather than
the desired image directly. Specifically, the generator’s
output is computed by adding the delta map to the input
image followed by the application of a tanh activation
function, tanh(G(x, c) + x). Our ablation study, sum-
marized in Tab. 2, shows the disease detection and local-
ization performance of StarGAN (baseline approach), and
the incremental performance improvement using the delta
map learning, fixed-point translation learning, and the two
approaches combined. We find that the major improve-
ment over StarGAN comes from the fixed-point transla-
tion learning, but the combined approach, for most cases,
provides enhanced performance compared to each individ-
ual approach. We therefore use the combination of delta
map learning and fixed-point translation learning in our pro-
posed Fixed-Point GAN, noting that the major improvement
over StarGAN is due to the proposed fixed-point translation
learning scheme. The implementation will be made pub-
licly available at http://github.com/***/***

5. Applications
5.1. Multi-Domain Image-to-Image Translation

Dataset. To compare the proposed Fixed-Point GAN with
StarGAN [5] (the current state of the art), we use Celeb-
Faces Attributes (CelebA) dataset [15]. This dataset is
composed of a total of 202,599 face images of various
celebrities. Each face image has 40 different attributes, fol-
lowing StarGAN’s public implementation [5] we adopt 5
domains (black hair, blond hair, brown hair,
male, and young) in our experiments and preprocess
the images by cropping the original 178×218 images into
178×178 and then re-scaling to 128×128. We use a random
subset of 2,000 samples for testing and the rest for training.

http://github.com/***/***


Image-Level Detection (AUC) Lesion-Level Localization Sensitivity
Dataset StarGAN w/ Delta w/ Fixed-Point Translation w/ Both StarGAN w/ Fixed-Point Translation w/ Both
BRATS 0.4611 0.5246 0.9980 0.9831 0.2500 0.8376 0.8449
PE 0.8832 0.8603 0.9216 0.9668 0.5833 0.7778 0.8056

Tab. 2: Ablation study of the generator’s configuration on brain lesion (BRATS2013) and pulmonary embolism (PE) detection. Selected
combinations are in bold. The empirical results show that the performance gain is largely due to fixed-point translation learning—the
contribution of delta map is minor and application dependent (detailed in Sec. 4)

StarGAN Our Fixed-Point GAN Autoencoder
2.40 ± 1.24 0.36 ± 0.35 0.11 ± 0.09

Tab. 3: Image-level L1 distance comparison for same-domain
translation. The ideal L1 distance for same-domain translation
should be zero, however, deep autoencoder networks have in-
evitable reconstruction error. With our fixed-point translation
learning, we try to minimize unnecessary image manipulations
for both cross- and same-domain translations. We show that
Fixed-Point GAN minimizes the same-domain translation differ-
ence map dramatically and is very close to the underlying genera-
tor’s reconstruction lower bound as opposed to StarGAN.

Method and Evaluation. We evaluate the cross-domain
image translation qualitatively by changing one attribute
(such as hair color, gender, or age) from the source do-
main at a time. This step-wise evaluation facilitates tracking
changes to image content. We further evaluate the same-
domain image translation both qualitatively and quantita-
tively by measuring image-level L1 distance between the
input and translated images.
Results. Fig. 1 presents a qualitative comparison between
StarGAN and Fixed-Point GAN for multi-domain image-
to-image translation. For the cross-domain image transla-
tion, StarGAN tends to make unnecessary changes, such
as altering the face color when the goal of translation is to
change the gender, age, or hair color (Rows 2–5 in Fig. 1).
Fixed-Point GAN, however, preserves the face color while
successfully translating the images to the target domains.
Furthermore, Fixed-Point GAN preserves the image back-
ground (marked with a blue arrow in Row 5 of Fig. 1), but
StarGAN fails to do so.

For the same-domain image translation, the superiority
of Fixed-Point GAN over StarGAN is even more striking.
As shown in Fig. 1, Fixed-Point GAN effectively keeps the
image content intact (images outlined in green) while Star-
GAN undesirably changes the image content (images out-
lined in red). For instance, the input image in the fourth
row of Fig. 1 is from the domains of blond hair, female, and
young. The same domain translation with StarGAN results
in an image in which the hair and face colors are signifi-
cantly altered. Although this color is closer to the average
blond hair color in the dataset, it is far from that in the in-
put image. Fixed-Point GAN with fixed-point translation
ability handles this problem properly. Further qualitative

comparisons between StarGAN and Fixed-Point GAN are
provided in the supplementary material.

Tab. 3 presents a quantitative comparison between Star-
GAN and Fixed-Point GAN for the task of same-domain
image translation. We use the image-level L1 distance be-
tween the input and generated images as the performance
metric. To further gain insights into the comparison, we
have included a dedicated autoencoder model that has the
same architecture as the generator used in StarGAN and
Fixed-Point GAN. As seen, the dedicated autoencoder has
an image-level L1 reconstruction error of 0.11±0.09, which
can be deemed as a technical lower bound for the recon-
struction error. The proposed Fixed-Point GAN dramat-
ically reduces the reconstruction error of StarGAN from
2.40±1.24 to 0.36±0.35. Our quantitative comparisons are
in-line with the qualitative results shown in Fig. 1.

5.2. Brain Lesion Detection and Localization with
Image-Level Annotation

Dataset. We extend Fixed-Point GAN from an image-to-
image translation method to a brain lesion detection and
localization method where only image-level annotation are
available. As a proof of concept, we use the BRATS 2013
dataset [16, 11]. The main dataset is divided into real and
synthetic images. We use the latter in our experiments since
the images show more fine details compared to the former;
thus, they are more sensitive to small changes. The syn-
thetic images are further divided into two categories: (1)
high-grade gliomas (HG), and (2) low-grade gliomas (LG).
Each of these categories has 25 patients and for each patient,
FLAIR, T1, T2, and post-Gadolinium T1 Magnetic
Resonance (MR) images are available. To ease the analysis,
we keep the input features consistent by taking only one
type (FLAIR) of MR images for all patients from both HG
and LG categories, resulting in a total of 9,050 MR slices.
We further preprocess the dataset by removing all slices
which are blank or have very little brain information. Fi-
nally, we randomly select 40 patients including 5,827 slices
for training and 10 patients with 1,461 slices for testing.
During training, we set aside one batch of the random sam-
ples from training dataset for validation. We pad the slices
to 300×300 and then center crop to 256×256 ensuring the
brain structures appear in the center of the image. Each
pixel of MR slices are annotated with one of the five possi-



Fig. 4: Performance comparisons of our Fixed-Point GAN with StarGAN on BRATS 2013 (a–c) and Pulmonary Embolism (PE) dataset
(d–f). We take the maximum value from the difference map and plot histograms (a–b) and (d–e) across all the test images. Comparing (a)
with (b) and (d) with (e) reveals that our Fixed-Point GAN is better than StarGAN in separability between healthy and diseased images,
naturally yielding a significant performance gain for image-level disease detection as shown in ROC curves (c) and (f).

ble labels: 1 for non-brain, non-tumor, necrosis, cyst, hem-
orrhage, 2 for surrounding edema, 3 for non-enhancing tu-
mor, 4 for enhancing tumor core, and 0 for everything else.
We group the MR slices with pixels annotated as only label
0 as the healthy domain and the others are associated with
the diseased domain.
Method and Evaluation. For training we use only image-
level annotation (healthy/diseased). The model is trained
for the cross-domain translation (diseased images to healthy
images and vice versa) as well as the same-domain transla-
tion using the proposed method. At inference time, we fo-
cus on translating any images to the healthy domain. The
desired behaviour for the GAN is to translate diseased im-
ages to healthy ones while keeping healthy images intact.
Having translated the images to the healthy domain, we de-
tect the presence and location of lesion in the difference im-
age by subtracting the translated healthy image from the in-
put image. We refer to the resultant difference image as the
difference map.

We evaluate the difference map at two different levels:
(1) image-level disease detection and (2) lesion-level local-
ization. For image-level detection, we take the maximum
value across all pixels in the difference map as the detec-
tion score. We then perform receiver operating characteris-
tics (ROC) curves using the resultant detection scores. For
the lesion-level localization task, we first binarize the differ-
ence maps using color quantization followed by clustering
the foreground pixels into the connected components. Each
connected component with an area larger than ten pixels is
considered as a lesion candidate. A lesion is considered
“detected” if the centroid of at least a lesion candidate falls
inside the lesion ground truth.
Results. Fig. 4a–b shows the histograms of maximum val-
ues of the difference map from StarGAN (Fig. 4a) and the
proposed method (Fig. 4b) for the diseased and healthy im-
ages. From Fig. 4a it is clear that the distributions of healthy
and diseased images are not distinguishable, suggesting that

StarGAN manipulates both diseased and healthy images in
a similar manner, irrespective of their domains. As a re-
sult, the difference maps from StarGAN cannot be used for
disease detection. On the other hand, with the proposed
Fixed-Point GAN, the distributions of the detection scores
for the healthy and diseases images have far less overlap,
suggesting that the generator of Fixed-Point GAN manipu-
lates the images differently depending on their source do-
mains. Fig. 4c compares ROC curves of both methods for
image-level lesion detection. Fixed-Point GAN achieves an
area under the curve (AUC) score of 0.9831, which is far
superior to StarGAN with an AUC of 0.4611. We further
compare StarGAN and our proposed method for the lesion-
level localization problem. For StarGAN, the lesion detec-
tion sensitivity is only 0.1358 while the proposed Fixed-
Point GAN successfully achieves a sensitivity of 0.8122 at
1 false positive per image (Fig. 5a). Qualitative comparison
between StarGAN and Fixed-Point GAN for brain lesion
detection and localization is provided in Fig. 2. More ex-
amples are available in the supplementary material.

5.3. Pulmonary Embolism Detection and Localiza-
tion with Image-Level Annotation

Dataset. Pulmonary embolism (PE) is a blood clot that
travels from a lower extremity source to the lung, where it
causes blockage of the pulmonary arteries. It is a major na-
tional health problem, but computer-aided PE detection and
localization can improve diagnostic capabilities of radiolo-
gists for the detection of this disorder, leading to earlier and
effective therapy for this potentially deadly disorder. We
utilize a database consisting of 121 computed tomography
pulmonary angiography (CTPA) scans with a total of 326
emboli. The dataset is organized exactly in the same man-
ner as suggested in [22, 18]. A candidate generator [13]
is first applied to generate a set of PE candidates, and then
by comparing against the ground truth, they are labeled as
PE and non-PE. Finally, a 2D patch of size 15×15mm is



extracted around each PE candidate according to a vessel-
aligned image representation [17]. As a result, PE appears
at the center of the PE images. The extracted images are
rescaled to 128×128. The dataset is divided at the patient-
level into a training set with 434 PE images (199 unique
PEs) and 3,406 non-PE images, and a test set with 253 PE
images (127 unique PEs) and 2,162 non-PE images. To en-
rich the training set, rotation-based data augmentation is ap-
plied for both PE and non-PE images.
Method and Evaluation. As with brain lesion detection
and localization (Sec. 5.2), we use only image-level an-
notations during training. At inference time, we always
remove PE from the input image (i.e. translating both PE
and non-PE images into the non-PE domain) irrespective of
whether PE is present in the input image. We follow the
same procedure described in Sec. 5.2 to generate the differ-
ence maps, detection scores, and ROC curves. Note that,
since each PE image has an embolus in its center, an em-
bolus is considered as “detected” if the corresponding PE
image is correctly classified; otherwise, “missed”. As such,
unlike Sec. 5.2, we do not pursue a connected component
analysis for PE localization.
Results. Our proposed Fixed-Point GAN outperforms Star-
GAN in both PE image-level detection and lesion-level
localization. Fig. 4d–e show the distributions of the de-
tection scores from StarGAN and Fixed-Point GAN. De-
spite the similar shapes, the overlapping area between the
PE and non-PE distributions of Fixed-Point GAN is much
smaller than that of StarGAN. The superiority of Fixed-
Point GAN is better reflected in Fig. 4f, where Fixed-Point
GAN achieves an AUC of 0.9668 while StarGAN’s AUC
is only 0.8832 for image-level PE detection. Fixed-Point
GAN also outperforms StarGAN in lesion-level localization
by achieving a sensitivity of 0.8056 with 2.94 false posi-
tives whereas StarGAN achieves a sensitivity of 0.4167 at
2.95 false positives per volume. The qualitative comparison
for PE removal between StarGAN and Fixed-Point GAN is
given in Fig. 2. For further analysis, Free-Response ROC
curves are provided in Fig. 5b.

6. Discussions
For detecting diseases, one could train an image clas-

sifier using weak image-level annotation, and then use the
class activation map (CAM) [21] for localization. For com-
parison, we trained a ResNet-50 [8], with ∼25M parame-
ters, to detect and localize eyeglasses and brain lesions. As
shown in the bottom panel of Fig. 2, the resulting CAMs
have low precision, covering both the regions containing
the eyeglasses/lesions and the unrelated background re-
gions. Although the low-precision CAMs may be suitable
for image-level brain lesion detection, they impede precise
localization of the brain lesions. Quantitatively, ResNet-
50 and Fixed-Point GAN achieve an AUC score of 0.9846

Fig. 5: FROCs of Fixed-Point GAN and StarGAN for lesion-level
localization on (a) BRATS 2013 and (b) PE dataset.

and 0.9831 respectively for image-level brain lesion detec-
tion, but the performance gap widens for brain lesion lo-
calization with ResNet-50 and Fixed-Point GAN, respec-
tively yielding a mean of IOU (intersection over union) of
0.1855±0.0560 and 0.3483±0.2420. Our results suggest
that Fixed-Point GAN is more suitable than CAMs for ob-
ject localization with image-level annotation.

In Fig. 4c, we show that StarGAN performs poorly
for image-level brain lesion detection, because StarGAN
is designed to perform general-purpose image translations,
rather than an image translation suitable for the task of dis-
ease detection. Owing to our new training scheme, Fixed-
Point GAN can achieve precise detection.

Referring to Tab. 2, we observe that StarGAN performs
far better for PE than brain lesion detection. We believe
this is because brain lesions can appear anywhere in the in-
put images, whereas PE always appears in the center of the
input images, resulting in a less challenging problem for
StarGAN to solve. Nonetheless, Fixed-Point GAN outper-
forms StarGAN for PE detection, achieving an AUC score
of 0.9668 compared to 0.8832 by StarGAN.

Referring to Fig. 2, we further observe that neither Star-
GAN nor Fixed-Point GAN can completely remove large
objects, like sunglasses or brain lesions, from the images.
Nevertheless, for image-level detection and lesion-level lo-
calization, it is sufficient to remove the objects partially,
but precise lesion-level segmentation using image-to-image
translation network requires complete removal of the object.
We will study this in our future work.

7. Conclusion
In this paper, we have introduced a new concept called

fixed-point translation, and developed a new GAN called
Fixed-Point GAN. Our comprehensive evaluation demon-
strates that our Fixed-Point GAN outperforms StarGAN [5]
in image-to-image translation and is superior in disease de-
tection and localization by a large margin. This perfor-
mance of Fixed-Point GAN is attributed to our new train-
ing scheme, realized by supervising same-domain transla-
tion and regularizing cross-domain translation.
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Appendix

Fig. 6: Now, all humor aside, if a GAN can remove diseases completely from images, it will offer a perfect method for segmenting all
diseases, an ambitious goal that has yet to achieve. Nevertheless, our method is still of great clinical significance in computer-aided
diagnosis for medical imaging, because it can be used for disease detection and localization by subtracting the generated healthy image
from the original image to reveal diseased regions, that is, detection and localization by removal. More importantly, our Fixed-Point
GAN is trained using only image-level annotation. It is much easier to obtain image-level annotation than lesion-level annotation, because
a large number of diseased and healthy images can be collected from PACS (picture archiving and communication systems), and labeled
at the image level by analyzing their radiological reports through NLP (natural language processing). With the availability of large well-
organized databases of medical images and their corresponding radiological reports in the future, we envision that Fixed-Point GAN will
be able to detect and localize diseases more accurately—and eventually to segment diseases—using only image-level annotation.

All figures and images (including those in the main paper) better viewed on-line in color and zoomed in for details



Eyeglass Detection and Localization by Removal Using Only Image-Level Annotation of the CelebA Dataset

Fig. 7: [Continued from Fig. 2] Additional test results in glass detection and localization by removal. The difference map (Column 3
for StarGan; Column 6 for Fixed-Point GAN) shows the absolution difference between the input (Column 1) and output (Column 2 for
StarGAN; Column 5 for Fixed-Point GAN). Applying the k-means clustering algorithm on the difference map yields a localization map,
which is then superimposed on the original image (Column 4 for StarGAN; Column 7 for Fixed-Point GAN), showing both StarGAN and
Fixed-Point GAN attempt to remove eyeglasses. However, the former leaves noticeable white “inks” along eyeglass frames (Rows 1 and
4, Column 2), while our method preserves the face color better. Removing sunglasses (Rows 5–9) has proven to be challenging: both
methods suffer from partial removal and artifacts. Nevertheless, Fixed-Point GAN tends to recover the face under the glasses and frames,
but StarGAN changes only regions around the frames. More importantly, our method can “insert” eyes at proper positions, as revealed in
the difference maps (Rows 5–9, Column 6), while StarGAN can hardly do so. To better visualize the subtle changes for negative samples
(Column 8), instead of the absolution difference, we show the difference directly, where the gray color (i.e., 0) means “no change”. In this
way, it can be observed more easily that StarGAN does some unnecessary small changes on hair (Rows 7 and 9, Column 10) and eyes
(Rows 7 and 10, Column 10), while Fixed-Point GAN generates smooth gray images (i.e., close to 0 everywhere; Column 12). Please
note that the CelebA Dataset currently does not have ground truth on the location and segmentation of glasses; therefore, a quantitative
performance evaluation of the glass localization cannot be conducted. However, our quantitative performance evaluations of brain lesion
localization and pulmonary embolism localization are included in Sec. 5.



Multi-Domain Image-to-Image Translation

Fig. 8: [Continued from Fig. 1] More test results in multi-domain image-to-image translation on CelebA dataset. Visually, Fixed-Point
GAN outperforms StarGAN: Fixed-Point GAN (Columns 7-11) preserves better the background (Rows 1, 3, 4, 6, 8, and 9), face color
(Rows 2–7), and facial features (Rows 7 and 9), whereas StarGAN (Columns 2-6) makes unnecessary changes. Furthermore, for same-
domain translation, StarGAN introduces noticeable artifacts (outlined in red), while Fixed-Point GAN can leave all the details intact
(outlined in green). It is worthy noting that the hair color of the facial image in the last input row (i.e., Row 9, Column 1) belongs to
Domain gray hair, which is not included in the training phase. As can be seen, Fixed-Point GAN successfully translates the input
image to target domains by changing the unseen hair color to desired colors and maintaining the original hair color (gray) in hair-color-
unrelated translations (Row 9, Columns 10–11). However, StarGAN produces unnatural images with artifacts (Row 9, Columns 2–4) and
inconsistent white hair colors (Row 9, Columns 5–6). This example shows that Fixed-Point GAN is better than StarGAN in generalization.



Brain Lesion Detection and Localization by Removal Using Only Image-Level Annotation

Fig. 9: [Continued from Fig. 2] Brain lesion detection and localization tested on additional positive samples (i.e. brain images with
lesions; Column 1) and negative samples (i.e. brain images without lesions; Column 8). Fixed-Point GAN achieves much better detection
performance, benefiting from the cleaner difference maps of negative samples (Column 12), while StarGAN highlights the brain regions
in all cases and makes the difference maps of positive and negative samples indistinguishable (comparing Column 3 with Column 10).
Although both methods fails to remove lesions completely, our method focuses on the lesion regions, and consequently, has a higher
localization accuracy. By contrast, the localization map of StarGAN (Column 4) is very noisy and unsuitable for lesion localization.
These comparisons demonstrate the superiority of Fixed-Point GAN in lesion detection and localization. For quantitative performance
evaluations, please refer to Fig. 4a–c and Sec. 5.2.



Pulmonary Embolism Detection and Localization by Removal Using Only Image-Level Annotation

Fig. 10: [Continued from Fig. 2] Pulmonary Embolism (PE) detection and localization (longitudinal view) tested on additional positive
samples (i.e. images with PEs; Column 1) and negative samples (i.e. images without PEs; Column 8). PE is a blood clot that creates
blockage (appearing dark and centered in image) in pulmonary arteries (appearing white). The current candidate generator (e.g. [13])
produces lots of false positives (negative samples) during localization; therefore, our goal in this application is to reduce false positives
through StarGAN and Fixed-Point GAN. Compared with StarGAN, the difference maps of negative samples from Fixed-Point GAN is
clean and easy to be separated from the difference maps of positive samples, yielding better detection performance. For quantitative
performance evaluations, please refer to Fig. 4d–f and Sec. 5.3.



Fig. 11: Pulmonary Embolism (PE) detection and localization (longitudinal view). Notice the images are from same candidates as in
Fig. 10 but the view direction is orthogonal to the angle used in Fig. 10.



Fig. 12: Pulmonary Embolism (PE) detection and localization (cross-sectional view). Notice the images are from same candidates as in
Fig. 10 but the view direction is cross-sectional.



Localization Using Class Activation Maps (CAMs)

Fig. 13: [Continued from Fig. 2] Additional test results of localization using class activation maps (CAMs). CAMs for localizing glasses,
brain lesion, and PE are obtained from ResNet-50 classifiers trained with corresponding datasets. Localization using CAMs is not as
precise as Fixed-Point GAN as discussed in Sec. 6.
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Convolutional Neural Networks for Medical Image
Analysis: Full Training or Fine Tuning?
Nima Tajbakhsh, Member, IEEE, Jae Y. Shin, Suryakanth R. Gurudu, R. Todd Hurst,
Christopher B. Kendall, Michael B. Gotway, and Jianming Liang*, Senior Member, IEEE

Abstract—Training a deep convolutional neural network (CNN)
from scratch is difficult because it requires a large amount of la-
beled training data and a great deal of expertise to ensure proper
convergence. A promising alternative is to fine-tune aCNN that has
been pre-trained using, for instance, a large set of labeled natural
images. However, the substantial differences between natural and
medical images may advise against such knowledge transfer. In
this paper, we seek to answer the following central question in the
context of medical image analysis: Can the use of pre-trained deep
CNNs with sufficient fine-tuning eliminate the need for training a
deep CNN from scratch? To address this question, we considered
four distinct medical imaging applications in three specialties (ra-
diology, cardiology, and gastroenterology) involving classification,
detection, and segmentation from three different imaging modali-
ties, and investigated how the performance of deep CNNs trained
from scratch compared with the pre-trained CNNs fine-tuned in
a layer-wise manner. Our experiments consistently demonstrated
that 1) the use of a pre-trained CNN with adequate fine-tuning
outperformed or, in the worst case, performed as well as a CNN
trained from scratch; 2) fine-tuned CNNs were more robust to the
size of training sets than CNNs trained from scratch; 3) neither
shallow tuning nor deep tuning was the optimal choice for a par-
ticular application; and 4) our layer-wise fine-tuning scheme could
offer a practical way to reach the best performance for the appli-
cation at hand based on the amount of available data.

Index Terms—Carotid intima-media thickness, computer-aided
detection, convolutional neural networks, deep learning,
fine-tuning, medical image analysis, polyp detection, pulmonary
embolism detection, video quality assessment.

I. INTRODUCTION

C ONVOLUTIONAL neural networks (CNNs) have been
used in the field of computer vision for decades [1]–[3].

However, their true value had not been discovered until the
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ImageNet competition in 2012, a success that brought about
a revolution through the efficient use of graphics processing
units (GPUs), rectified linear units, new dropout regulariza-
tion, and effective data augmentation [3]. Acknowledged as
one of the top 10 breakthroughs of 2013 [4], CNNs have once
again become a popular learning machine, now not only within
the computer vision community but across various applica-
tions ranging from natural language processing to hyperspec-
tral image processing and to medical image analysis. The main
power of a CNN lies in its deep architecture [5]–[8], which al-
lows for extracting a set of discriminating features at multiple
levels of abstraction.
However, training a deep CNN from scratch (or full training)

is not without complications [9]. First, CNNs require a large
amount of labeled training data—a requirement that may be dif-
ficult to meet in the medical domain where expert annotation
is expensive and the diseases (e.g., lesions) are scarce in the
datasets. Second, training a deep CNN requires extensive com-
putational and memory resources, without which the training
process would be extremely time-consuming. Third, training
a deep CNN is often complicated by overfitting and conver-
gence issues, whose resolution frequently requires repetitive
adjustments in the architecture or learning parameters of the
network to ensure that all layers are learning with comparable
speed. Therefore, deep learning from scratch can be tedious and
time-consuming, demanding a great deal of diligence, patience,
and expertise.
A promising alternative to training a CNN from scratch is

to fine-tune a CNN that has been trained using a large labeled
dataset from a different application. The pre-trained models
have been applied successfully to various computer vision
tasks as a feature generator or as a baseline for transfer learning
[10]–[12]. Herein, we address the following central question
in the context of medical image analysis: Can the use of
pre-trained deep CNNs with sufficient fine-tuning eliminate the
need for training a deep CNN from scratch? This is an impor-
tant question because training deep CNNs from scratch may not
be practical, given the limited labeled data in medical imaging.
To answer this central question, we conducted an extensive set
of experiments for 4 medical imaging applications: 1) polyp
detection in colonoscopy videos, 2) image quality assessment
in colonoscopy videos, 3) pulmonary embolism detection
in computed tomography (CT) images, and 4) intima-media
boundary segmentation in ultrasonographic images. We have
chosen these applications to represent the most common clini-
cally used imaging modality systems (i.e., CT, ultrasonography,
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and optical endoscopy) and the most common medical image
analysis tasks (i.e., lesion detection, image segmentation, and
image classification). For each application, we compared the
performance of the pre-trained CNNs through fine-tuning
with that of the CNNs trained from scratch entirely based on
medical imaging data. We also compared the performance of
the CNN-based systems with their corresponding handcrafted
counterparts.

II. RELATED WORKS

Applications of CNNs in medical image analysis can be
traced to the 1990s, when they were used for computer-aided
detection of microcalcifications in digital mammography
[13], [14] and computer-aided detection of lung nodules in
CT datasets [15]. With revival of CNNs owing to the devel-
opment of powerful GPU computing, the medical imaging
literature has witnessed a new generation of computer-aided
detection systems that show superior performance. Examples
include automatic polyp detection in colonoscopy videos
[16], [17], computer-aided detection of pulmonary embolism
(PE) in CT datasets [18], automatic detection of mitotic cells
in histopathology images [19], computer-aided detection of
lymph nodes in CT images [20], and computer-aided anatomy
detection in CT volumes [21]. Applications of CNNs in medical
image analysis are not limited to only computer-aided detection
systems, however. CNNs have recently been used for carotid
intima-media thickness measurement in ultrasound images
[22], pancreas segmentation in CT images [23], brain tumor
segmentation in magnetic resonance imaging (MRI) scans
[24], multimodality isointense infant brain image segmentation
[25], neuronal membrane segmentation in electron microscopy
images [26], and knee cartilage segmentation in MRI scans
[27].
One important aspect of CNNs is the “transferability” of

knowledge embedded in the pre-trained CNNs. Recent research
conducted by Azizpour et al. [11] suggests that the success of
knowledge transfer depends on the distance, or dissimilarity,
between the database on which a CNN is trained and the data-
base to which the knowledge is to be transferred. Although the
distance between natural image and medical imaging databases
is considerable, recent studies show the potential for knowledge
transfer to the medical imaging domain.
The recent research on transfer learning in medical imaging

can be categorized into two groups. The first group [28]–[30]
consists of works wherein a pre-trained CNN is used as a fea-
ture generator. Specifically, the pre-trained CNN is applied to an
input image and then the CNN outputs (features) are extracted
from a certain layer of the network. The extracted features are
then used to train a new pattern classifier. For instance, in [28],
pre-trained CNNs were used as a feature generator for chest
pathology identification. A similar study [29] by Ginneken et
al. showed that although the use of pre-trained CNNs could not
outperform a dedicated nodule detection system, the integration
of CNN-based features with the handcrafted features enabled
improved performance.

The second group [31]–[36] consists of works wherein a pre-
trained CNN is adapted to the application at hand. For instance,
in [33], the fully connected layers of a pre-trained CNNwere re-
placed with a new logistic layer, and then the labeled data were
used to train only the appended layer while keeping the rest of
the network the same. This treatment yielded promising results
for classification of unregistered multiview mammogram. Chen
et al. [32] suggested the use of a fine-tuned pre-trained CNN
for localizing standard planes in ultrasound images. In [35], the
authors fine-tuned all layers of a pre-trained CNN for automatic
classification of interstitial lung diseases. They also suggested
an attenuation rescale scheme to convert 1-channel CT slices to
RGB-like images needed for tuning the pre-trained model. Shin
et al. [34] used fine-tuned pre-trained CNNs to automatically
map medical images to document-level topics, document-level
sub-topics, and sentence-level topics. In [36], fine-tuned pre-
trained CNNs were used to automatically retrieve missing or
noisy cardiac acquisition plane information frommagnetic reso-
nance imaging and predict the five most common cardiac views.
Different from the previous approaches, Schlegl et al. [31] con-
sidered the fine-tuning of an unsupervised network. They ex-
plored unsupervised pre-training of CNNs to inject information
from sites or image classes for which no annotations were avail-
able, and showed that such across site pre-training improved
classification accuracy compared to random initialization of the
model parameters.

III. CONTRIBUTIONS

In this paper, we systematically study knowledge transfer
to medical imaging applications, making the following
contributions:
• We demonstrated how fine-tuning a pre-trained CNN in a
layer-wise manner leads to incremental performance im-
provement. This approach distinguishes our work from
[28]–[30], which downloaded the features from the fully
connected layers of a pre-trained CNN and then trained a
separate pattern classifier. Our approach also differs from
[31]–[33] wherein the entire pre-trained CNN underwent
fine-tuning.

• We analyzed how the availability of training samples in-
fluences the choice between pre-trained CNNs and CNNs
trained from scratch. To our knowledge, this issue has not
yet been systematically addressed in the medical imaging
literature.

• We compared the performance of pre-trained CNNs, not
only against handcrafted approaches but also against
CNNs trained from scratch using medical imaging data.
This analysis is in contrast to [28], [29], who provided only
limited performance comparisons between pre-trained
CNNs and handcrafted approaches.

• We presented consistent results with conclusive outcomes
for 4 distinct medical imaging applications involving clas-
sification, detection, and segmentation in 3 different med-
ical imaging modalities, which add substantially to the
state of the art where conclusions are based solely on 1
medical imaging application.
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IV. CONVOLUTIONAL NEURAL NETWORKS (CNNS)

CNNs are so-named because of the convolutional layers in
their architectures. Convolutional layers are responsible for de-
tecting certain local features in all locations of their input im-
ages. To detect local structures, each node in a convolutional
layer is connected to only a small subset of spatially connected
neurons in the input image channels. To enable the search for
the same local feature throughout the input channels, the con-
nection weights are shared between the nodes in the convolu-
tional layers. Each set of shared weights is called a kernel, or
a convolution kernel. Thus, a convolutional layer with ker-
nels learns to detect local features whose strength across the
input images is visible in the resulting feature maps. To re-
duce computational complexity and achieve a hierarchical set of
image features, each sequence of convolution layers is followed
by a pooling layer, a workflow reminiscent of simple and com-
plex cells in the primary visual cortex [37]. The max pooling
layer reduces the size of feature maps by selecting the max-
imum feature response in overlapping or non-overlapping local
neighborhoods, discarding the exact location of such maximum
responses. As a result, max pooling can further improve transla-
tion invariance. CNNs typically consist of several pairs of con-
volutional and pooling layers, followed by a number of consec-
utive fully connected layers, and finally a softmax layer, or re-
gression layer, to generate the desired outputs. In more modern
CNN architectures, computational efficiency is achieved by re-
placing the pooling layer with a convolution layer with a stride
larger than 1.
Similar to multilayer perceptrons, CNNs are trained with the

back-propagation algorithm by minimizing the following cost
function with respect to the unknown weights :

(1)

where denotes the number of training images, denotes
the training image with the corresponding label , and

denotes the probability by which is correctly
classified. Stochastic gradient descent is commonly used for
minimizing this cost function, where the cost over the entire
training set is approximated with the cost over mini-batches of
data. If denotes the weights in convolutional layer at
iteration , and denotes the cost over a mini-batch of size ,
then the updated weights in the next iteration are computed as
follows:

(2)

where is the learning rate of the layer, is the momentum
that indicates the contribution of the previous weight update in
the current iteration, and is the scheduling rate that decreases
learning rate at the end of each epoch.

V. FINE-TUNING

The iterative weight update in (2) begins with a set of ran-
domly initialized weights. Specifically, before the commence-
ment of the training phase, weights in each convolutional layer
of a CNN are initialized by values randomly sampled from a
normal distribution with a zero mean and small standard de-
viation. However, considering the large number of weights in
a CNN and the limited availability of labeled data, the itera-
tive weight update, starting with a random weight initialization,
may lead to an undesirable local minimum for the cost func-
tion. Alternatively, the weights of the convolutional layers can
be initialized with the weights of a pre-trained CNN with the
same architecture. The pre-trained net is generated with a mas-
sive set of labeled data from a different application. Training a
CNN from a set of pre-trained weights is called fine-tuning and
has been used successfully in several applications [10]–[12].
Fine-tuning begins with copying (transferring) the weights

from a pre-trained network to the network we wish to train.
The exception is the last fully connected layer whose number
of nodes depends on the number of classes in the dataset. A
common practice is to replace the last fully connected layer of
the pre-trained CNN with a new fully connected layer that has
as many neurons as the number of classes in the new target ap-
plication. In our study, we deal with 2-class and 3-class classi-
fication tasks; therefore, the new fully connected layer has 2 or
3 neurons depending on the application under study. After the
weights of the last fully connected layer are initialized, the new
network can be fine-tuned in a layer-wise manner, starting with
tuning only the last layer, then tuning all layers in a CNN.
Consider a CNN with layers where the last 3 layers are

fully connected layers. Also let denote the learning rate of
the layer in the network. We can fine-tune only the last (new)
layer of the network by setting for . This level of
fine-tuning corresponds to training a linear classifier with the
features generated in layer . Likewise, the last 2 layers of
the network can be fine-tuned by setting for ,
. This level of fine-tuning corresponds to training an artificial
neural network with 1 hidden layer, which can be viewed as
training a nonlinear classifier using the features generated in
layer . Similarly, fine-tuning layers , , and
are essentially equivalent to training an artificial neural network
with 2 hidden layers. Including the previous convolution layers
in the update process further adapts the pre-trained CNN to the
application at hand but may require more labeled training data
to avoid overfitting.
In general, the early layers of a CNN learn low level image

features, which are applicable to most vision tasks, but the late
layers learn high-level features, which are specific to the appli-
cation at hand. Therefore, fine-tuning the last few layers is usu-
ally sufficient for transfer learning. However, if the distance be-
tween the source and target applications is significant, one may
need to fine-tune the early layers as well. Therefore, an effec-
tive fine-tuning technique is to start from the last layer and then
incrementally include more layers in the update process until
the desired performance is reached. We refer to tuning the last
few convolutional layers as “shallow tuning” and we consider
tuning all the convolutional layers as “deep tuning”. We would
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like to note that the suggested fine-tuning scheme differs from
[10], [12] wherein the network remains the same and serves as
a feature generator, and also differs from [11] wherein the entire
network undergoes fine-tuning at once.

VI. APPLICATIONS AND RESULTS
In our study, we considered 4 different medical imaging ap-

plications from 3 imaging modality systems. We study the per-
formance of polyp detection and PE detection using a free-re-
sponse operating characteristic (FROC) analysis, analyze the
performance of frame classification by means of an ROC anal-
ysis, and evaluate the performance of boundary segmentation
through a boxplot analysis. To perform statistical comparisons,
we have computed the error bars corresponding to 95% confi-
dence intervals for both ROC and FROC curves according to the
method suggested in [38]. The error bars enable us to compare
each pair of performance curves at multiple operating points
from a statistical perspective. Specifically, if the error bars of
a pair of curves do not overlap at a fixed false positive rate, then
the two curves are statistically different ( ) at the given
operating point. An appealing feature of this statistical analysis
is that we can compare the performance curves at a clinically
acceptable operating point rather than comparing the curves as
a whole. While we have discussed the statistical comparisons
throughout the paper, we have further summarized them in a
number of tables in supplementary material, which can be found
in the supplementary files/multimedia tab.
We used the Caffe library [39] for both training and

fine-tuning CNNs. For consistency and ease of comparison, we
used the AlexNet architecture for the 4 applications under study.
Training and fine-tuning of each AlexNet took approximately
2–3 hours depending on the size of the training set. To ensure
the proper convergence of each CNN, we monitored the area
under the receiver operating characteristic curve. Specifically,
for each experiment, we divided the training set into a smaller
training set with 80% of the training data and a validation set
with the remaining 20% of the training data and then computed
area under the curve on the validation set. The training process
was terminated when the highest accuracy on the validation set
was observed. All training was performed using an NVIDIA
GeForce GTX 980TI (6 GB on-board memory). The fully
trained CNNs were initialized with random weights sampled
from Gaussian distributions. We also experimented with other
initialization techniques such as those suggested in [40] and
[41], but we observed no significant performance gain after
convergence, even though we noticed varying speed of conver-
gence using these initialization techniques.
For both full training and fine-tuning scenarios, we used

a stratified training set of image patches where the positive
and negative classes were equally present. For this purpose,
we randomly down-sampled the majority (negative) class,
while keeping the minority class (positive) unchanged. For the
fine-tuning scenario, we used the pre-trained AlexNet model
provided in the Caffe library. The pre-trained AlexNet consists
of approximately 5 million parameters in the convolution
layers and about 55 million parameters in its fully connected
layers, and is trained using 1.2 million images labeled with
1000 semantic classes. The model used in our study is the

TABLE I
THE ALEXNET ARCHITECTURE USED IN OUR EXPERIMENTS. OF NOTE,
IS THE NUMBER OF CLASSES, WHICH IS 3 FOR INTIMA-MEDIA INTERFACE
SEGMENTATION AND IS 2 FOR COLONOSCOPY FRAME CLASSIFICATION,

POLYP DETECTION, AND PULMONARY EMBOLISM DETECTION

snapshot taken after 360,000 training iterations. As shown
in Table I, AlexNet begins with 2 pairs of convolutional and
pooling layers, mapping the 227 227 input images to 13
13 feature maps. This architecture then proceeds with a

sequence of 3 convolutional layers that efficiently implement a
convolutional layer with 9 9 kernels, yet with a larger degree
of nonlinearity. The sequence of convolutional layers is then
followed by a pooling layer and 3 fully connected layers. The
first fully connected layer can be viewed as a convolution layer
with 6 6 kernels and the other 2 fully connected layers as
convolutional layers with 1 1 kernels.
Table II summarizes the learning parameters used for training

and fine-tuning of AlexNet in our experiments. The listed pa-
rameters were tuned through an extensive set of trial and error
experiments. According to our exploratory experiments, the
learning rate and scheduling rate heavily influenced the con-
vergence of CNNs. A learning rate of 0.001 however ensured
proper convergence for all 4 applications. A smaller learning
rate slowed down convergence and a larger learning rate often
caused convergence failures. Our exploratory experiments
also indicated that the value of depended on the speed of
convergence. During a fast convergence, the learning rate can
be safely decreased after a few epochs, allowing for the use of a
small scheduling rate. However, during a slow convergence, a
larger scheduling rate is required to maintain a relatively large
learning rate. For all 4 applications, we found to be a
reasonable choice.

A. Polyp Detection
Colonoscopy is the preferred technique for colon cancer

screening and prevention. The goal of colonoscopy is to
find and remove colonic polyps—precursors to colon cancer.
Polyps, as shown in Fig. 1, can appear with substantial vari-
ations in color, shape, and size. The challenging appearance
of polyps can often lead to misdetection, particularly during
long and back-to-back colonoscopy procedures where fatigue
negatively affects the performance of colonoscopists. Polyp
miss-rates are estimated to be about 4% to 12% [43]–[46];
however, a more recent clinical study [47] is suggestive that
this misdetection rate may be as high as 25%. Missed polyps
can lead to the late diagnosis of colon cancer with an associated
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TABLE II
LEARNING PARAMETERS USED FOR TRAINING AND FINE-TUNING OF ALEXNET IN OUR EXPERIMENTS. IS THE MOMENTUM, IS THE LEARNING RATE OF

THE WEIGHTS IN EACH CONVOLUTIONAL LAYER, AND DETERMINES HOW DECREASES OVER EPOCHS. THE LEARNING RATE FOR THE BIAS TERM
IS ALWAYS SET TWICE AS LARGE AS THE LEARNING RATE OF THE CORRESPONDING WEIGHTS. OF NOTE, “FINE-TUNED ALEXNET:LAYER1-LAYER2”

INDICATES THAT ALL LAYERS BETWEEN AND INCLUDING THESE 2 LAYERS UNDERGO FINE-TUNING

Fig. 1. Variations in shape and appearance of polyps in colonoscopy videos.

decreased survival rate of less than 10% for metastatic colon
cancer [48]. Computer-aided polyp detection may enhance
optical colonoscopy screening by reducing polyp misdetection.
Several computer-aided detection (CAD) systems have been

suggested for automatic polyp detection in colonoscopy videos.
The early systems [49]–[51] relied on polyp color and texture
for detection. However, limited texture visibility on the surface
of polyps and large color variations among polyps hindered the
applicability of such systems. More recent systems [52]–[56]
relied on temporal information and shape information to en-
hance polyp detection. Shape features proved more effective
than color and texture in this regard; however, these features
can be misleading without consideration of the context in which
the polyp is found. In our previous works [57]–[59], culminated
in [42], we attempted to overcome the limitation of approaches
based solely on polyp shape. Specifically, we suggested a hand-
crafted approach for combining the shape and context informa-
tion around the polyp boundaries and demonstrated the superi-
ority of this approach over the other state-of-the-art methods.
For training and evaluation, we used our database of 40 short

colonoscopy videos. Each colonoscopy frame in our database
comes with a binary ground truth image. We randomly divided
the colonoscopy videos into a training set containing 3,800
frames with polyps and 15,100 frames without polyps and into a
test set containing 5,700 frames with polyps and 13,200 frames
without polyps. We applied our handcrafted approach [42] to

the training and test frames to obtain a set of polyp candidates
with the corresponding bounding boxes. At each candidate
location, given the available bounding box, we extracted a set
of image patches with data augmentation. Specifically, for each
candidate, we extracted patches at 3 scales by enlarging the
corresponding bounding box by a factor of 1.0 , 1.2 , and
1.5 . At each scale, we extracted patches after we translated
the candidate location by 10% of the resized bounding box
in horizontal and vertical directions. We further rotated each
resulting patch 8 times by horizontal and vertical mirroring and
flipping. We then labeled a patch as positive if the underlying
candidate fell inside the ground truth for polyps; otherwise, the
candidate was labeled as negative. Because of the relatively
large number of negative patches, we collected a stratified set of
100,000 training patches for training and fine-tuning the CNNs.
During the test stage, all test patches extracted from a polyp
candidate were fed to the trained CNN. We then averaged the
probabilistic outputs of the test patches at the candidate level
and performed an FROC analysis for performance evaluation.
Fig. 2(a) compares the FROC curve of our handcrafted

approach with that of fine-tuned CNNs and a CNN trained
from scratch. To avoid clutter in the figure, we have shown
only a subset of representative FROC curves. Statistical com-
parisons between each pair of FROC curves at three operating
points are also presented in Table S1 in the supplementary
file. The handcrafted approach is significantly outperformed
by all CNN-based scenarios ( ). This result is probably
because our handcrafted approach used only geometric infor-
mation to remove false-positive candidates. For fine-tuning,
the lowest performance was obtained when only the last layer
of AlexNet was updated with colonoscopy data. However,
fine-tuning the last two layers (FT:fc7-fc8) achieved a signifi-
cantly higher sensitivity ( ) at nearly all operating points
compared to the pre-trained AlexNet with only 1 fine-tuned
layer (FT:only fc8). We also observed incremental perfor-
mance improvement when we included more convolutional
layers in the fine-tuning process. Specifically, the pre-trained
CNN with shallow fine-tuning (FT:fc7-fc8) was significantly
outperformed by the pre-trained CNNs with a moderate level
of fine-tuning (FT:conv5,4,3-fc8) at most of the operating
points. Furthermore, the deeply-tuned CNNs (FT:conv1,2-fc8)
achieved a significantly higher sensitivity than the pre-trained
CNNs with a moderate level of fine-tuning particularly at low
false positive rates. Also, as seen in Fig. 2(a), fine-tuning the
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Fig. 2. FROC analysis for polyp detection. (a) Comparison between incremental fine-tuning, training from scratch, and a handcrafted approach [42]. (b) Effect
of reduction in the training data on the performance of CNNs trained from scratch and deeply fine-tuned CNNs.

last few convolutional layers was sufficient to outperform an
AlexNet model trained from scratch in a low false positive rate
setting.
The performance gap between fully trained AlexNet model

and their deeply fine-tuned counterparts becomes more evident
when fewer training samples are used for training and tuning.
To demonstrate this effect, we trained a CNN from scratch and
fine-tuned the entire AlexNet using 50% and 25% of the entire
training samples. We reduced training data at the video level to
exclude a fraction of unique polyps from the training set. The
results are shown in Fig. 2(b). With a 50% reduction in training
data, a significant performance gap was observed between the
CNN trained from scratch and the deeply fine-tuned CNN.With
a 25% reduction in the training data, the fully trained CNN
showed dramatic performance degradation, but the deeply fine-
tuned CNN still exhibited relatively high performance. These
findings strongly favor the use of the fine-tuning approach over
full training of a CNN from scratch.

B. Pulmonary Embolism Detection

APE is a blood clot that travels from a lower extremity source
to the lung, where it causes blockage of the pulmonary arteries.
The mortality rate of untreated PE may approach 30% [61], but
it decreases to as low as 2%with early diagnosis and appropriate
treatment [62]. CT pulmonary angiography (CTPA) is the pri-
mary means for PE diagnosis, wherein a radiologist carefully
traces each branch of the pulmonary artery for any suspected
PEs. CTPA interpretation is a time-consuming task whose accu-
racy depends on human factors, such as attention span and sensi-
tivity to the visual characteristics of PEs. CAD can have a major
role in improving PE diagnosis and decreasing the reading time
of CTPA datasets.
We based our experiments on the PE candidates generated

by our previous work [60] and the image representation that we
suggested for PE in our recently published study [18]. Our can-
didate generation method is an improved version of the tobog-
ganing algorithm [63] that aims to find an embolus as a dark
region surrounded by a brighter background. Our image repre-

Fig. 3. 5 different PEs in the standard 3-channel representation and in our
suggested 2-channel representation. PEs appear more consistently in our
representation. We use our PE representation for the experiments presented
herein because it achieves greater classification accuracy and enables improved
convergence.

sentation consistently results in 2-channel image patches, which
capture PEs in cross-sectional and longitudinal views of vessels
(see Fig. 3). This unique representation dramatically decreases
the variability in the appearance of PEs, enabling us to train
more accurate CNNs. However, since the AlexNet architecture
receives color images as its input, the 2-channel image patches
must be converted to color patches. For this purpose, we simply
repeated the second channel and produced 3-channel RGB-like
image patches. The resulting patches were then used for training
and fine-tuning an AlexNet. For performance comparison, we
used a handcrafted approach [60], which is arguably one of
the most, if not the most, accurate PE CAD system. The hand-
crafted approach utilizes the same candidate generation method
[60], but uses vessel-based features along with Haralick [64]
and wavelet-based features for PE characterization, and finally
uses a multi-instance classifier for candidate classification.
For experiments, we used a database consisting of 121 CTPA

datasets with a total of 326 PEs. We first applied the tobog-
ganing algorithm to obtain a crude set of PE candidates. This
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Fig. 4. FROC analysis for pulmonary embolism detection. (a) Comparison between incremental fine-tuning, training from scratch, and a handcrafted approach
[60]. To avoid clutter in the figure, error bars are displayed for only a subset of plots. A more detailed analysis is presented in Table S2 in the supplementary file.
(b) Effect of reduction in the training data on the performance of CNNs trained from scratch and deeply fine-tuned CNNs.

application resulted in 6,255 PE candidates, of which 5,568
were false positives and 687 were true positives. The number
of true positives was far larger than the number of PEs because
the tobogganing algorithm can cast several candidates for the
same PE.We divided the collected candidates at the patient level
into a training set with 434 true positives (199 unique PEs) and
3,406 false positives, and a test set with 253 true positives (127
unique PEs) and 2,162 false positives. For training the CNNs,
we extracted patches of 3 different physical sizes, resulting in
10 mm-, 15 mm-, and 20 mm-wide patches. We also translated
each candidate location along the direction of the affected vessel
3 times, up to 20% of the physical size of the patches. We further
augmented the training dataset by rotating the longitudinal and
cross-sectional vessel planes around the vessel axis, resulting in
5 additional variations for each scale and translation.We formed
a stratified training set with 81,000 image patches for training
and fine-tuning the CNNs. For testing, we performed the same
data augmentation for each test candidate and then computed the
overall PE probability by averaging the probabilistic scores gen-
erated for the data-augmented patches for each PE candidate.
For evaluation, we performed an FROC analysis by changing

a threshold on the probabilistic scores generated for the test
PE candidates. Fig. 4(a) shows the FROC curves for the hand-
crafted approach, a deep CNN trained from scratch, and a
subset of representative pre-trained CNNs that are fine-tuned
in a layer-wise manner. We have further summarized statistical
comparisons between each pair of FROC curves in Table S2 in
the supplementary file. As shown, the pre-trained CNN with
two fine-tuned layers (FT:fc7-fc8) achieved a significantly
higher sensitivity ( ) than that of the pre-trained CNN
with only one fine-tuned layer (FT:only fc8). The improved sen-
sitivity was observed at most of the operating points. However,
inclusion of each new layer in the fine-tuning process resulted
in only marginal performance improvement, even though
the accumulation of such marginal improvements yielded a
substantial margin between the deeply fine-tuned CNNs and
those with 1, 2, or 3 fine-tuned layers. Specifically, the deeply

fine-tuned CNN (FT:conv1-fc8) yielded significantly higher
sensitivity ( ) than that of the pre-trained CNN with 2
fine-tuned layers (FT:fc7-fc8) at the majority of the operating
points shown in Fig. 4(a). At 3 false positives per volume, the
deeply fine-tuned CNN also achieved significantly higher sen-
sitivity ( ) than that of the pre-trained CNN with three
fine-tuned layers (FT:fc7-fc8). From Fig. 4(a), it is also evident
that the deeply fine-tuned CNN yielded a non-significant per-
formance improvement over the handcrafted approach. This
is probably because the handcrafted approach is an accurate
system whose underlying features are specifically and incre-
mentally designed to remove certain types of false detections.
Yet, we find it interesting that an end-to-end learning machine
can learn such a sophisticated set of features with minimal
engineering effort. From Fig. 4(a), we also observed that the
deeply fine-tuned CNN performs on a par with the CNN trained
from scratch.
We further analyzed how the size of training samples influ-

ences the competitive performance between the CNN trained
from scratch and the deeply fine-tuned CNN. For this purpose,
we reduced the training samples at the PE-level to 50% and
25%. The results are shown in Fig. 4(b). With a 50% reduction
in training data, a significant performance gap was observed be-
tween the CNN trained from scratch and the deeply tuned CNN
in all the operating points. With a 25% reduction in the training
data, we observed a decrease in the overall performance of both
CNNs with a smaller yet significant gap between the two curves
in most of the operating points. These findings not only favor the
use of a deeply fine-tuned CNN but also underscore the impor-
tance of large training sets for effective training and fine-tuning
of CNNs.

C. Colonoscopy Frame Classification

Image quality assessment can have a major role in objec-
tive quality assessment of colonoscopy procedures. Typically, a
colonoscopy video contains a large number of non-informative
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Fig. 5. (a) An informative colonoscopy frame. (b,c,d) Examples of non-infor-
mative colonoscopy images. The non-informative frames are usually captured
during the rapid motion of the scope or during wall contact.

images with poor colon visualization that are not suitable for in-
specting the colon or performing therapeutic actions. The larger
the fraction of non-informative images in a video, the lower the
quality of colon visualization, and thus the lower the quality of
colonoscopy. Therefore, one way to measure the quality of a
colonoscopy procedure is to monitor the quality of the captured
images. Such quality assessment can be used during live proce-
dures to limit low-quality examinations or in a post-processing
setting for quality monitoring purposes.
Technically, image quality assessment at colonoscopy can

be viewed as an image classification task whereby an input
image is labeled as either informative or non-informative.
Fig. 5 shows examples of non-informative and informative
colonoscopy frames. In our previous work [65], we suggested
a handcrafted approach based on local and global features that
were pooled from the image reconstruction error. We showed
that our handcrafted approach outperformed the other major
methods [66], [67] for quality assessment in colonoscopy
videos. In the current effort, we explored the use of deep CNNs
as an alternative to a carefully engineered method. Specifically,
we compared the performance of our handcrafted approach
with that of a deep CNN trained from scratch and a pre-trained
CNN that was fine-tuned using the labeled colonoscopy frames
in a layer-wise manner..
For experiments, we used 6 complete colonoscopy videos.

Considering the expenses associated with annotation of all
video frames, we instead sampled each colonoscopy video
by selecting 1 frame from every 5 seconds of each video
and thereby removed many similar colonoscopy frames. The
resulting set was further refined to create a balanced dataset
of 4,000 colonoscopy images in which both informative and
non-informative classes were represented equally. A trained ex-
pert then manually labeled the collected images as informative
or non-informative. A gastroenterologist further reviewed the
labeled images for corrections. We divided the labeled frames
at the video-level into training and test sets, each containing
approximately 2,000 colonoscopy frames. For data augmen-
tation, we extracted 200 sub-images of size 227 227 pixels
from random locations in each 500 350 colonoscopy frame,
resulting in a stratified training set with approximately 40,000
sub-images. During the test stage, the probability of each frame
being informative was computed as the average probabilities
assigned to its randomly cropped sub-images.
We used an ROC analysis for performance comparisons be-

tween the CNN-based scenarios and handcrafted approach. The
results are shown in Fig. 6(a). To avoid clutter in the figure,
we have shown only a subset of representative ROC curves.
We have, however, summarized the statistical comparisons be-

tween all ROC curves at 10%, 15%, and 20% false positive
rates in Table S3 in the supplementary file. We observed that
all CNN-based scenarios significantly outperformed the hand-
crafted approach in at least one of the above 3 operating points.
We also observed that fine-tuning the pre-trained CNN halfway
through the network (FT:conv4-fc8 and FT:conv5-fc8) not only
significantly outperformed shallow-tuning but also was supe-
rior to a deeply fine-tuned CNN (FT:conv1-fc8) at 10% and
15% false positive rates. This was probably because the kernels
learned in the early layers of the CNN were suitable for image
quality assessment and thus their fine-tuning was unnecessary.
Furthermore, while the CNN trained from scratch outperformed
the pre-trained CNN with shallow fine-tuning (FT:only fc8),
it was outperformed by the pre-trained CNN with a moderate
level of fine-tuning (FT:conv5-fc8). Therefore, the fine-tuning
scheme was superior to the full training scheme from scratch.
To examine how the performance of CNNs changes with re-

spect to the size of the training data, we decreased the number of
training samples by factors of 1/10, 1/20, and 1/100. Comparing
these with other applications, we considered a further reduction
in the size of the training dataset because a moderate decrease
did not influence the performance of CNNs substantially. As
shown in Fig. 6(b), both deeply fine-tuned CNNs and fully
trained CNN showed insignificant performance degradation
even when using 10% of the original training set. However,
further reduction in the size of the training set substantially de-
graded the performance of fully trained CNNs and, to a largely
less extent, the performance of deeply fine-tuned CNNs. The
relatively high performance of the deeply fine-tuned CNNs,
even with a limited training set, indicates the usefulness of
the kernels learned from ImageNet for colonoscopy frame
classification.

D. Intima-Media Boundary Segmentation
Carotid intima-media thickness (CIMT), a noninvasive ul-

trasonography method, has proven valuable for cardiovascular
risk stratification. The CIMT is defined as the distance between
the lumen-intima and media-adventitia interfaces at the far wall
of the carotid artery (Fig. 7). The CIMT measurement is per-
formed bymanually tracing the lumen-intima andmedia-adven-
titia interfaces in a region of interest (ROI), followed by cal-
culation of the average distance between the traced interfaces.
However, manual tracing of the interfaces is time-consuming
and tedious. Therefore, several methods [68]–[71] have been
developed to allow automatic CIMT image interpretation. The
suggested methods are more or less based on handcrafted tech-
niques whose performance may vary according to image quality
and the level of artifacts present within the images.
We formulated this interface segmentation task as a 3-class

classification problem wherein the goal was to classify every
pixel in the ROI into 3 categories: a pixel on the lumen-intima
interface, a pixel on the media-adventitia interface, or a non-in-
terface pixel. For this classification problem, we trained a 3-way
CNN using the training patches collected from the lumen-intima
interface and media-adventitia interface, as well as from other
random locations far from the desired interfaces. Fig. 7 illus-
trates how these patches are extracted from an ultrasonography
frame.
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Fig. 6. ROC analysis for image quality assessment. (a) Comparison between incremental fine-tuning, training from scratch, and a handcrafted approach [65].
(b) Effect of reduction in the training data on the performance of convolutional neural networks (CNNs) trained from scratch vs deeply fine-tuned CNNs.

Fig. 7. Intima media thickness (IMT) is measured within a region of interest
after the lumen-intima and media-adventitia interfaces are segmented. For auto-
matic interface segmentation, we trained a 3-way convolutional neural network
whose training patches were extracted from each of these interfaces (highlighted
in red and green) and far from the interfaces (highlighted in gray).

Fig. 8 shows how a CNN-based system traces the interfaces
for a given test ROI. The trained CNN is first applied to each
pixel within the test ROI in a convolutional manner, gener-
ating 2 confidence maps of the same size as the ROI, with
the first map showing the probability of a pixel residing on
the lumen-intima interface and the second map showing the
probability of a pixel residing on the media-adventitia interface.
For visualization convenience, we merged these 2 confidence
maps into 1 color-coded confidence map in which the green
and red colors indicate the likelihood of being a lumen-intima
interface and a media-adventitia interface, respectively. As

shown in Fig. 8(b), the probability band of each interface is
too thick to accurately measure intima-media thickness. To
resolve this issue, we obtained thinner interfaces by scanning
the confidence map column by column to search for rows with
the maximum response for each of the 2 interfaces, yielding a
1-pixel boundary with a step-like shape around each interface,
as shown in Fig. 8(c). To smooth the boundaries, we used 2
active contour models (snakes) [72], one for the lumen-intima
interface and one for the media-adventitia interface. The open
snakes were initialized with the current step-like boundaries
and then kept deforming until they took the actual shapes of
the interfaces. Fig. 8(d) shows the converged snakes for the test
ROI. We computed intima-media thickness as the average of
the vertical distances between the 2 open snakes.
For the experiments, we used a database of 92 CIMT videos.

The expert reviews each video to determine 3 ROIs for which
the CIMT can be measured reliably. To create the ground truth,
lumen-intima and media-adventitia interfaces were annotated as
the consensus of 2 experts for each of the 276 ROIs. We divided
the ROIs at the subject-level into a training set with 144 ROIs
and a test set with 132 ROIs. For training and fine-tuning the
CNNs, we extracted a stratified set of 200,000 training patches
from the trainingROIs.Because theAlexNet architecture used in
our study required color patches as its input, each extracted gray-
scale patch was converted to a color patch by repeating the gray
channel thrice. Note that we did not perform data augmentation
for the positive patches, for 2 reasons. First, 92 60 ROIs allow
us to collect a large number of patches around the lumen-intima
andmedia-adventitia interfaces, eliminating the need for any fur-
ther data augmentation. Second, given the relatively small dis-
tance between the 2 interfaces, translation-based data augmenta-
tionwould inject a large amount of label noise,whichwould neg-
atively affect the convergence and the overall performance of the
CNNs. In the test stage, we measured the error of interface seg-
mentation as the average distance between the expert-annotated
interfaces and those producedby the systems.For amoredetailed
analysis, we measured segmentation error for the lumen-intima
and media-adventitia interfaces separately.



1308 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 5, MAY 2016

Fig. 8. The test stage of lumen-intima and media-adventitia interface segmentation. (a) A test region of interest. (b) The corresponding confidence map generated
by the convolutional neural network. The green and red colors indicate the likelihood of a lumen-intima interface and media-adventitia interface, respectively.
(c) The thick probability band around each interface is thinned by selecting the largest probability for each interface in each column. (d) The step-like boundaries
are smoothed using 2 open snakes. (e) Interface segmentation from the ground truth.

Fig. 9. Box plots of segmentation error for (a) the lumen-intima interface and (b) the media-adventitia interface.

Fig. 9 shows the box plots of segmentation error for each in-
terface. The whiskers were plotted according to Tukey method.
For easier quantitative comparisons, we have also shown the
average and standard deviation of the localization error above
each boxplot. The segmentation error for the media-adventitia
interface was generally greater than the lumen-intima interface,
which was expected because of the relatively more challenging
image characteristics of the media-adventitia interface. For both
interfaces, holding all the layers fixed except the last layer (FT:
only fc8) resulted in the lowest performance, which was com-
parable to that of the handcrafted approach [73]. However, in-
clusion of layer fc7 in the fine-tuning process (FT:fc7-fc8) led
to a significant decrease ( ) in segmentation error for
both interfaces. The reduced localization error was also signifi-
cantly lower ( ) than that of the handcrafted approach.
We observed another significant drop ( ) in the local-
ization error of both interfaces after fine-tuning layer fc6; how-
ever, this error was still significantly larger ( ) than that
of the deeply fine-tuned AlexNet (FT:conv1-fc8). We observed
a localization error comparable to that of the deeply fine-tuned
AlexNet only after inclusion of layer conv5 in the fine-tuning
process. With deeper fine-tuning, we obtained only marginal
decrease in the localization error for both interfaces. Further-
more, the localization error obtained by the deeply fine-tuned
CNN was significantly lower than that of the CNN trained from

scratch for media-adventitia interface ( ) and for Lumen-
intima interface ( ), indicating the superiority of the
fine-tuning scheme over the training scheme from scratch. Of
note, we observed no significant performance degradation for
either deeply fine-tuned CNNs or fully trained CNNs, even after
reducing the training patches to a single patient. This outcome
resulted because each patient in our database provided approxi-
mately 12 ROIs, which enabled the extraction of a large number
of distinct training patches that could be used for training and
for fine-tuning the deep CNNs.

VII. DISCUSSION

In this study, to ensure generalizability of our findings,
we considered 4 common medical imaging problems from 3
different imaging modality systems. Specifically, we chose PE
detection as representative of computer-aided lesion detection
in 3-dimensional volumetric images, polyp detection as repre-
sentative of computer-aided lesion detection in 2-dimensional
images, intima-media boundary segmentation as representative
of machine learning-based medical image segmentation, and
colonoscopy image quality assessment as representative of
medical image classification. These applications differ because
they require solving problems at different image scales. For
instance, although intima-media boundary segmentation and
PE detection may require the examination of a small sub-region
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Fig. 10. Convergence speed for a deeply fine-tuned CNN and CNNs trained from scratch with three different initialization techniques.

within the images, polyp detection and frame classification
demand far larger receptive fields. Therefore, we believe that
the chosen applications encompass a variety of applications
relevant to the field of medical imaging.
We thoroughly investigated the potential for fine-tuned CNNs

in the context of medical image analysis as an alternative to
training deep CNNs from scratch. We performed our analyses
using both large training sets and reduced training sets. When
using complete datasets, we observed that shallow tuning of the
pre-trained CNNs most often led to a performance inferior to
CNNs trained from scratch, whereas with deeper fine-tuning, we
obtained performance comparable and even superior to CNNs
trained from scratch. The performance gap between deeply fine-
tuned CNNs and those trained from scratch widened when the
size of training sets was reduced, which led us to conclude that
fine-tuned CNNs should always be the preferred option regard-
less of the size of training sets available.
Another advantage of fine-tuned CNNs is the speed of con-

vergence. To demonstrate this advantage, we compare the speed
of convergence for a deeply fine-tuned CNN and a CNN trained
from scratch in Fig. 10. For a thorough comparison, we used 3
different techniques to initialize the weights of the fully trained
CNNs: 1) a method commonly known as Xavier, which was
suggested in [40], 2) a revised version of Xavier called MSRA,
which was suggested in [41], and a basic random initializa-
tion method based on Gaussian distributions. In this analysis,
we computed the AUC on the validation data as a measure of
convergence. Specifically, each snapshot of the model was ap-

plied to the patches of the validation set and then the classifi-
cation performance was evaluated using an ROC analysis. Be-
cause we dealt with a 3-class classification problem for the ask
of intimia-media boundary segmentation, we merged the 2 in-
terface classes into a positive class and then computed the AUC
for the resulting binary classification (interface vs. background).
As shown, the fine-tuned CNN quickly reaches its maximum
performance, but the CNNs trained from scratch require longer
training in order to reach their highest performance. Further-
more, the use of different initialization techniques led to dif-
ferent trends of convergence, even though we observed no sig-
nificant performance gain after complete convergence except
for PE detection.
We observed that the depth of fine-tuning is fundamental to

achieving accurate image classifiers. Although shallow tuning
or updating the last few convolutional layers is sufficient for
many applications in the field of computer vision to achieve
state-of-the-art performance, we discovered that a deeper level
of tuning is essential for medical imaging applications. For in-
stance, we observed a marked performance gain using deeply
fine-tuned CNNs, particularly for polyp detection and intima-
media boundary segmentation, probably because of the sub-
stantial difference between these applications and the database
with which the pre-trained CNN was constructed. However,
we did not observe a similarly profound performance gain for
colonoscopy frame classification, which we attribute to the rel-
ative similarity between ImageNet and the colonoscopy frames
in our database. Specifically, both databases use high-resolution
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images with similar low-level image information, which is why
fine-tuning the late convolutional layers, which have applica-
tion-specific features, is sufficient to achieve high-level perfor-
mance for colonoscopy frame classification.
We based our experiments on the AlexNet architecture

because a pre-trained AlexNet model was available in the
Caffe library and that this architecture was deep enough that
we could investigate the impact of the depth of fine-tuning on
the performance of pre-trained CNNs. Alternatively, deeper
architectures—such as VGGNet and GoogleNet—could have
been used. Deeper architectures have recently shown relatively
high performance for challenging computer vision tasks, but
we do not anticipate a significant performance gain through the
use of deeper architectures for medical imaging applications.
We emphasize that the objective of this work was not to achieve
the highest performance for a number of different medical
imaging tasks but to examine the capabilities of fine-tuning in
comparison with the training scheme from scratch. For these
purposes, AlexNet is a reasonable architectural choice.
We would like to acknowledge that the performance curves

reported for different models and applications may not be the
best that we could achieve for each experiment. This sub-op-
timal performance is related to the choice of the hyper-parame-
ters of CNNs that can influence the speed of convergence and
final accuracy of a model. Although we attempted to find the
working values of these parameters, finding the optimal values
was not feasible given the large number of CNNs studied in
our paper and that training each CNN was a time-consuming
process even on the high-end GPUs. Nevertheless, this issue
may not change our overall conclusions as the majority of the
CNNs used in our comparisons are pre-trained models that
may be less affected by the choice of hyper-parameters than
the CNNs trained from scratch.
In this study, due to space constraints, we were not able to

cover all medical imaging modalities. For instance, we did
not study the performance of fine-tuning in MR images or
histopathology images, for which full training of CNNs from
scratch had shown promising performance. However, consid-
ering the successful knowledge transfer from natural images
to CT, ultrasound, and endoscopy applications, we surmise
that fine-tuning would succeed in other medical applications
as well. Furthermore, our study was focused on fine-tuning of
a pre-trained supervised model. However, a pre-trained unsu-
pervised model such as those obtained by restricted Boltzmann
machines (RBMs) or convolutional RBMs [74] could also be
considered, even though the availability of ImageNet database
with millions of labeled images from 1000 semantic classes
may make the use of a pre-trained supervised model a natural
choice for fine-tuning. Nevertheless, unsupervised models are
still useful for 1D signal processing due to the absence of a large
database of labeled 1D signals. For instance, fine-tuning of an
unsupervised model was used in [75] for acoustic speech recog-
nition and in [76] for detection of epilepsy in EEG recordings.

VIII. CONCLUSION
In this paper, we aimed to address the following central

question in the context of medical image analysis: Can the
use of pre-trained deep CNNs, with sufficient fine-tuning,

eliminate the need for training a deep CNN from scratch? Our
extensive experiments, based on 4 distinct medical imaging
applications from 3 different imaging modality systems, have
demonstrated that deeply fine-tuned CNNs are useful for
medical image analysis, performing as well as fully trained
CNNs and even outperforming the latter when limited training
data are available. Our results are important because they
show that knowledge transfer from natural images to medical
images is possible, even though the relatively large difference
between source and target databases is suggestive that such
application may not be possible. We also have observed that
the required level of fine-tuning differed from one application
to another. Specifically, for PE detection, we achieved per-
formance saturation after fine-tuning the late fully connected
layers; for colonoscopy frame classification, we achieved the
highest performance through fine-tuning the late and middle
layers; and for interface segmentation and polyp detection, we
observed the highest performance by fine-tuning all layers in
the pre-trained CNN. Our findings suggest that for a particular
application, neither shallow tuning nor deep tuning may be
the optimal choice. Through the layer-wise fine-tuning, one
can learn the effective depth of tuning, as it depends on the
application at hand and the amount of labeled data available
for tuning. Layer-wise fine-tuning may offer a practical way
to achieve the best performance for the application at hand
based on the amount of available data. Our experiments further
confirm the potential of CNNs for medical imaging applications
because both deeply fine-tuned CNNs and fully trained CNNs
outperformed the corresponding handcrafted alternatives.
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SUPPLEMENTARY MATERIAL1

TABLE S1: Statistical comparisons between the FROC curves shown in Fig. 2 for polyp detection (level of significance is
α = 0.05). The curves are compared at 0.01 and .001 false positives per frame, because they coincide with the elbows of
the performance curves where they yield relatively higher sensitivity. A red cell indicates that a pair of curves are statistically
different in neither of the chosen operating point whereas a green cell indicates at which operating points a statistically
significant difference is observed.

FT:only
fc8

FT:fc7-fc8

FT:fc6-fc8

FT:conv5-fc8

FT:conv4-fc8

FT:conv3-fc8

FT:conv2-fc8

FT:conv1-fc8

A
lexN

et scratch

FT:only fc8
FT:fc7-fc8 10−2,−3

FT:fc6-fc8 10−2,−3

FT:conv5-fc8 10−2,−3 10−2,−3 10−2,−3

FT:conv4-fc8 10−2,−3 10−2,−3 10−2,−3

FT:conv3-fc8 10−2,−3 10−2,−3 10−2,−3 10−3

FT:conv2-fc8 10−2,−3 10−2,−3 10−2,−3 10−2,−3 10−2,−3 10−2,−3

FT:conv1-fc8 10−2,−3 10−2,−3 10−2,−3 10−2,−3 10−2,−3 10−2,−3

AlexNet scratch 10−2,−3 10−2 10−2,−3 10−2,−3 10−2,−3 10−3 10−3 10−2,−3

Handcrafted [41] 10−2,−3 10−2,−3 10−2,−3 10−2,−3 10−2,−3 10−2,−3 10−2,−3 10−2,−3 10−2,−3

TABLE S2: Statistical comparisons between the FROC curves shown in Fig. 4 for pulmonary embolism detection (level of
significance is α=0.05). Each cell presents a statistical comparison between a pair of FROC curves at 1, 2, 3, 4, and 5 false
positives per volume. A red cell indicates that the two curves are not statistically different at any of the five operating points,
but a green cell contains the operating points at which the two curves are statistically different.

FT:only
fc8

FT:fc7-fc8

FT:fc6-fc8

FT:conv5-fc8

FT:conv4-fc8

FT:conv3-fc8

FT:conv2-fc8

FT:conv1-fc8

A
lexN

et scratch

FT:only fc8
FT:fc7-fc8 2,3,4,5
FT:fc6-fc8 1,2,3,4,5

FT:conv5-fc8 1,2,3,4,5 1,2
FT:conv4-fc8 1,2,3,4,5 1,2,3
FT:conv3-fc8 1,2,3,4,5 1,2,3,5 1
FT:conv2-fc8 1,2,3,4,5 1,2,3,4,5
FT:conv1-fc8 1,2,3,4,5 1,2,3,4,5 3

AlexNet scratch 1,2,3,4,5 1,2,3
Handcrafted [59] 1,2,3,4,5 1,2,3,5
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TABLE S3: Statistical comparisons between the ROC curves shown in Fig. 6 for frame classification (level of significance is
α=0.05). Each cell presents a statistical comparison between a pair of ROC curves at false positive rate of 10%, 15%, and
20% (0.1, 0.15, and 0.2 on the horizontal axis). A red cell indicates that the two curves are not statistically different at any of
the two operating points, but a green cell contains the operating points at which the two curves are statistically different.

FT:only
fc8

FT:fc7-fc8

FT:fc6-fc8

FT:conv5-fc8

FT:conv4-fc8

FT:conv3-fc8

FT:conv2-fc8

FT:conv1-fc8

A
lexN

et scratch

FT:only fc8
FT:fc7-fc8 0.1
FT:fc6-fc8 0.1

FT:conv5-fc8 0.1,0.15
FT:conv4-fc8 0.1,0.15
FT:conv3-fc8 0.1,0.15
FT:conv2-fc8 0.1,0.15
FT:conv1-fc8 0.1,0.15

AlexNet scratch 0.1 0.1,0.15 0.1,0.15 0.15
Handcrafted [64] 0.2 0.1,0.15,0.2 0.1,0.15,0.2 0.1,0.15,0.2 0.1,0.15,0.2 0.1,0.15,0.2 0.1,0.15,0.2 0.1,0.15,0.2 0.15,0.2

TABLE S4: Statistical comparisons between the boxplots shown in Fig. 9. The p-values larger than 0.05 are highlighted in
red.

Lumen-intima interface

FT:only
fc8

FT:fc7-fc8

FT:fc6-fc8

FT:conv5-fc8

FT:conv4-fc8

FT:conv3-fc8

FT:conv2-fc8

FT:conv1-fc8

A
lexN

et scratch

FT:only fc8
FT:fc7-fc8 p<.0001
FT:fc6-fc8 p<.0001 p<.0001

FT:conv5-fc8 p<.0001 p<.0001 p<.001
FT:conv4-fc8 p<.0001 p<.0001 p<.0001 0.5808
FT:conv3-fc8 p<.0001 p<.0001 p<.0001 0.0638 0.0758
FT:conv2-fc8 p<.0001 p<.0001 p<.0001 0.2501 0.3570 0.2284
FT:conv1-fc8 p<.0001 p<.0001 p<.0001 0.4183 0.5491 0.4650 0.9530

AlexNet scratch p<.0001 p<.0001 0.7829 p<.05 p<.0001 p<.0001 p<.0001 p<.0001
handCrafted 0.8148 p<.0001 p<.0001 p<.0001 p<.0001 p<.0001 p<.0001 p<.0001 p<.0001

Media-adventitia interface

FT:only
fc8

FT:fc7-fc8

FT:fc6-fc8

FT:conv5-fc8

FT:conv4-fc8

FT:conv3-fc8

FT:conv2-fc8

FT:conv1-fc8

A
lexN

et scratch

FT:only fc8
FT:fc7-fc8 p<.0001
FT:fc6-fc8 p<.0001 p<.0001

FT:conv5-fc8 p<.0001 p<.0001 p<.05
FT:conv4-fc8 p<.0001 p<.0001 p<.0001 p<.05
FT:conv3-fc8 p<.0001 p<.0001 p<.05 0.7904 p<.05
FT:conv2-fc8 p<.0001 p<.0001 p<.05 0.7160 p<.05 0.8854
FT:conv1-fc8 p<.0001 p<.0001 p<.001 0.2474 0.2456 0.2915 0.2313

AlexNet scratch p<.0001 p<.0001 0.3954 0.2106 p<.05 0.1369 0.0981 p<.05
handCrafted 0.5109 p<.0001 p<.0001 p<.0001 p<.0001 p<.0001 p<.0001 p<.0001 p<.0001
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Abstract

Intense interest in applying convolutional neural net-

works (CNNs) in biomedical image analysis is wide spread,

but its success is impeded by the lack of large annotated

datasets in biomedical imaging. Annotating biomedical im-

ages is not only tedious and time consuming, but also de-

manding of costly, specialty-oriented knowledge and skill-

s, which are not easily accessible. To dramatically reduce

annotation cost, this paper presents a novel method called

AIFT (active, incremental fine-tuning) to naturally integrate

active learning and transfer learning into a single frame-

work. AIFT starts directly with a pre-trained CNN to seek

“worthy” samples from the unannotated for annotation,

and the (fine-tuned) CNN is further fine-tuned continuously

by incorporating newly annotated samples in each iteration

to enhance the CNN’s performance incrementally. We have

evaluated our method in three different biomedical imaging

applications, demonstrating that the cost of annotation can

be cut by at least half. This performance is attributed to the

several advantages derived from the advanced active and

incremental capability of our AIFT method.

1. Introduction

Convolutional neural networks (CNNs) [14] have

brought about a revolution in computer vision thanks

to large annotated datasets, such as ImageNet [6] and

Places [27]. As evidenced by an IEEE TMI special issue [8]

and two forthcoming books [28, 17], intense interest in ap-

plying CNNs in biomedical image analysis is wide spread,

∗This research has been supported partially by NIH under Award Num-

ber R01HL128785, by ASU and Mayo Clinic through a Seed Grant and

an Innovation Grant. The content is solely the responsibility of the authors

and does not necessarily represent the official views of NIH.

but its success is impeded by the lack of such large annotat-

ed datasets in biomedical imaging. Annotating biomedical

images is not only tedious and time consuming, but also de-

manding of costly, specialty-oriented knowledge and skill-

s, which are not easily accessible. Therefore, we seek to

answer this critical question: How to dramatically reduce

the cost of annotation when applying CNNs in biomedical

imaging. In doing so, we present a novel method called

AIFT (active, incremental fine-tuning) to naturally integrate

active learning and transfer learning into a single frame-

work. Our AIFT method starts directly with a pre-trained

CNN to seek “salient” samples from the unannotated for

annotation, and the (fine-tuned) CNN is continuously fine-

tuned by incrementally enlarging the training dataset with

newly annotated samples. We have evaluated our method

in three different applications including colonoscopy frame

classification, polyp detection, and pulmonary embolism

(PE) detection, demonstrating that the cost of annotation

can be cut by at least half.

This outstanding performance is attributed to a simple

yet powerful observation: To boost the performance of C-

NNs in biomedical imaging, multiple patches are usual-

ly generated automatically for each candidate through data

augmentation; these patches generated from the same can-

didate share the same label, and are naturally expected to

have similar predictions by the current CNN before they are

expanded into the training dataset. As a result, their entropy

and diversity provide a useful indicator to the “power” of a

candidate in elevating the performance of the current CNN.

However, automatic data augmentation inevitably generates

“hard” samples for some candidates, injecting noisy label-

s; therefore, to significantly enhance the robustness of our

method, we compute entropy and diversity by selecting on-

ly a portion of the patches of each candidate according to

the predictions by the current CNN.
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Several researchers have demonstrated the utility of fine-

tuning CNNs for biomedical image analysis, but they only

performed one-time fine-tuning, that is, simply fine-tuning

a pre-trained CNN once with available training samples in-

volving no active selection processes (e.g., [4, 19, 5, 2, 21,

7, 18, 24]). To our knowledge, our proposed method is a-

mong the first to integrate active learning into fine-tuning C-

NNs in a continuous fashion to make CNNs more amicable

for biomedical image analysis with an aim to cut annota-

tion cost dramatically. Compared with conventional active

learning, our AIFT method offers several advantages:

1. Starting with a completely empty labeled dataset, re-

quiring no initial seed labeled samples (see Alg. 1);

2. Incrementally improving the learner through continu-

ous fine-tuning rather than repeatedly re-training (see

Sec. 3.1);

3. Naturally exploiting expected consistency among the

patches associated for each candidate to select samples

“worthy” of labeling (see Sec. 3.2);

4. Automatically handling noisy labels as only a portion

(e.g., a quarter) of the patches in each candidate partic-

ipate in the selection process (see Sec. 3.3);

5. Computing entropy and diversity locally on a small

number of patches within each candidate, saving com-

putation time considerably (see Sec. 3.3).

More importantly, our method has the potential to exert

important impact on computer-aided diagnosis (CAD) in

biomedical imaging, because the current regulations require

that CAD systems be deployed in a “closed” environment,

in which all CAD results be reviewed and errors if any be

corrected by radiologists; as a result, all false positives are

supposed to be dismissed and all false negatives supplied,

an instant on-line feedback that may make CAD systems

self-learning and improving possible after deployment giv-

en the continuous fine-tuning capability of our method.

2. Related work

2.1. Transfer learning for medical imaging

Gustavo et al. [2] replaced the fully connected layers of

a pre-trained CNN with a new logistic layer and trained

only the appended layer with the labeled data while keep-

ing the rest of the network the same, yielding promising

results for classification of unregistered multiview mam-

mograms. In [5], a fine-tuned pre-trained CNN was ap-

plied for localizing standard planes in ultrasound images.

Gao et al. [7] fine-tuned all layers of a pre-trained CNN

for automatic classification of interstitial lung diseases. In

[21], Shin et al. used fine-tuned pre-trained CNNs to au-

tomatically map medical images to document-level topic-

s, document-level sub-topics, and sentence-level topics. In

[18], fine-tuned pre-trained CNNs were used to automat-

ically retrieve missing or noisy cardiac acquisition plane

information from magnetic resonance imaging and predic-

t the five most common cardiac views. Schlegl et al. [19]

explored unsupervised pre-training of CNNs to inject infor-

mation from sites or image classes for which no annotations

were available, and showed that such across site pre-training

improved classification accuracy compared to random ini-

tialization of the model parameters. Tajbakhsh et al. [24]

systematically investigated the capabilities of transfer learn-

ing in several medical imaging applications. However, they

all performed one-time fine-tuning—simply fine-tuning a

pre-trained CNN just once with available training samples,

involving neither active selection processes nor continuous

fine-tuning.

2.2. Integrating active learning with deep learning

The literature of general active learning and deep learn-

ing is rich and deep [8, 28, 17, 20, 9, 10, 26]. However,

the research aiming to integrate active learning with deep

learning is sparse: Wang and Shang [25] may be the first

to incorporate active learning with deep learning, and based

their approach on stacked restricted Boltzmann machines

and stacked autoencoders. A similar idea was reported for

hyperspectral image classification [15]. Stark et al. [22]

applied active learning to improve the performance of C-

NNs for CAPTCHA recognition, while Al Rahhal et al. [1]

exploited deep learning for active electrocardiogram classi-

fication. All these approaches are fundamentally different

from our AIFT approach in that in each iteration they all re-

peatedly re-trained the learner from scratch while we con-

tinuously fine-tune the (fine-tuned) CNNs in an incremental

manner, offering five advantages as listed in Sec. 1.

3. Proposed method

We present our AIFT method in the context of computer-

aided diagnosis (CAD) in biomedical imaging. A CAD sys-

tem typically has a candidate generator, which can quickly

produce a set of candidates, among which, some are true

positives and some are false positives. After candidate gen-

eration, the task is to train a classifier to eliminate as many

false positives as possible while keeping as many true posi-

tives as possible. To train a classifier, each of the candidates

must be labeled. We assume that each candidate takes one

of |Y | possible labels. To boost the performance of CNNs

for CAD systems, multiple patches are usually generated

automatically for each candidate through data augmenta-

tion; these patches generated from the same candidate in-

herit the candidate’s label. In other words, all labels are

acquired at the candidate level. Mathematically, given a set

of candidates, U = {C1, C2, ..., Cn}, where n is the number

of candidates, and each candidate Ci = {x
1
i , x

2
i , ..., x

m
i } is

associated with m patches, our AIFT algorithm iteratively

selects a set of candidates for labeling (illustrated in Alg. 1).
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Algorithm 1: Active incremental fine-tuning method.

Input:

U = {Ci}, i ∈ [1, n] {U contains n candidates}

Ci = {x
j
i}, j ∈ [1,m] {Ci has m patches}

M0: pre-trained CNN

b: batch size

α: patch selection ratio

Output:

L: labeled candidates

Mt: fine-tuned CNN model at Iteration t
Functions:

p← P (C,M) {outputs ofM given ∀x ∈ C}

Mt ← F (L,Mt−1) {fine-tuneMt−1 with L}

a← mean(pi) {a = 1

m

∑m
j=1

pji}

Initialize:

L ← ∅, t← 1

1 repeat

2 for each Ci ∈ U do

3 pi ← P (Ci,Mt−1)
4 if mean(pi) > 0.5 then

5 S
′

i ← top α percent of the patches of Ci

6 else

7 S
′

i ← bottom α percent of the patches of Ci

8 end

9 Build matrix Ri using Eq. 3 for S ′i
10 end

11 Sort U according to the numerical sum of Ri

12 Query labels for top b candidates, yielding Q
13 L ← L

⋃

Q; U ← U \ Q
14 Mt ← F (L,Mt−1); t← t+ 1

15 until classification performance is satisfactory;

3.1. Continuous finetuning

At the beginning, the labeled dataset L is empty; we

take a pre-trained CNN (e.g., AlexNet) and run it on U
to select b number of candidates for labeling. The new-

ly labeled candidates will be incorporated into L to con-

tinuously fine-tune the CNN incrementally until the perfor-

mance is satisfactory. Several researchers have demonstrat-

ed that fine-tuning offers better performance and is more ro-

bust than training from scratch. From our experiments, we

have found that continuously fine-tuning the CNN, which

has been fine-tuned in the previous iteration, with enlarged

datasets converges faster than repeatedly fine-tuning the o-

riginal pre-trained CNN. We also found that continuously

fine-tuning the CNN with only newly labeled data demands

careful meta-parameter adjustments.

3.2. Active candidate selection

In active learning, the key is to develop a criterion for

determining the “worthiness” of a candidate for annotation.

Our criterion is based on an observation: All patches gen-

erated from the same candidate share the same label; they

are expected to have similar predictions by the current C-

NN. As a result, their entropy and diversity provide a use-

ful indicator to the “power” of a candidate in elevating the

performance of the current CNN. Intuitively, entropy cap-

tures the classification certainty—higher uncertainty values

denote higher degrees of information; while diversity indi-

cates the prediction consistency among the patches within a

candidate—higher diversity values denote higher degrees of

prediction inconsistency among the patches within a candi-

date. Therefore, candidates with higher entropy and higher

diversity are expected to contribute more in elevating the

current CNN’s performance. Formally, assuming the pre-

diction of patch xj
i by the current CNN is pji , we define its

entropy as:

eji = −

|Y |
∑

k=1

pj,ki log pj,ki (1)

and diversity between patches xj
i and xl

i of candidate Ci as:

di(j, l) =

|Y |
∑

k=1

(pj,ki − pl,ki )log
pj,ki

pl,ki
(2)

Entropy eji denotes the information furnished by patch xj
i of

candidate Ci in the unlabeled pool. Diversity di(j, l), cap-

tured by the symmetric Kullback Leibler divergence [13],

estimates the amount of information overlap between patch-

es xj
i and xl

i of candidate Ci. By definition, all the entries

in eji and di(j, l) are non-negative. Further, di(j, j) = 0,

∀j, therefore, for notational simplicity, we combine eji and

di(j, l) into a single matrix Ri for each candidate Ci:

Ri(j, l) =

{

λ1e
j
i if j = l,

λ2di(j, l) otherwise
(3)

where λ1 and λ2 are trade-offs between entropy and diver-

sity. We use two parameters for convenience, so as to easily

turn on/off entropy or diversity during experiments.

3.3. Handling noisy labels via majority selection

Automatic data augmentation is essential to boost CNN’s

performance, but it inevitably generates “hard” samples for

some candidates as shown in Fig. 1 and Fig. 2 (c), injecting

noisy labels; therefore, to significantly enhance the robust-

ness of our method, we compute entropy and diversity by

selecting only a portion of the patches of each candidate ac-

cording to the predictions by the current CNN. Specially,

for each candidate Ci we first compute the average proba-

bilistic prediction of all of its patches:

ai =
1

m

m
∑

j=1

pji (4)
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Figure 1: Experts label a frame based on the overall qual-

ity: if over 75% of a frame (i.e., candidate in this applica-

tion) is clear, it is considered “informative”. For example,

the whole frame (the leftmost image) is labeled as “infor-

mative”, but not all the patches associated with this frames

are “informative", although they inherit the “informative”

label. This is the main motivation for the majority selection

in our AIFT method.

where m is the number of patches within candidate Ci, p
j
i

is the prediction probability of patch xj
i . If ai > 0.5, we

select the top α percent patches; otherwise, the bottom α
percent patches. Based on the selected patches, we then use

Eq. 3 to construct the score matrix Ri of size αm × αm
for each candidate Ci in U . Our proposed majority selection

method automatically excludes the patches with noisy la-

bels because of their low confidences. We should note that

the idea of combining entropy and diversity was inspired

by [3], but there is a fundamental difference because they

computed R across the whole unlabeled dataset with time

complexityO(m2), which is very computational expensive,

while we compute Ri(j, l) locally on the selected patches

within each candidate, saving computation time consider-

ably with time complexity O(α2m2), where α = 1/4 in

our experiments.

3.4. An illustration of prediction patterns

Given unlabeled candidates U = {C1, C2, ..., Cn} with

Ci = {x
1
i , x

2
i , ..., x

m
i }, assuming the prediction of patch xj

i

by the current CNN is pji , we call the histogram of pji for

j ∈ [1,m] the prediction pattern of candidate Ci. As shown

in Column 1 of Tab. 1, there are seven typical prediction

patterns:

• Pattern A: The patches’ predictions are mostly con-

centrated at 0.5, with a higher degree of uncertainty.

Most active learning algorithms [20, 9] favor this type

of candidate as it is good at reducing the uncertainty.

• Pattern B: It is flatter than Pattern A, as the patches’

predictions are spread widely from 0 to 1, yielding a

higher degree of inconsistency. Since all the patch-

es belonging to a candidate are generated via data ar-

gumentation, they (at least the majority of them) are

expected to have similar predictions. This type of can-

didate has the potential to contribute significantly to

enhancing the current CNN’s performance.

• Pattern C: The patches’ predictions are clustered at

both ends, resulting in a higher degree of diversity.

This type of candidate is most likely associated with

noisy labels at the patch level as illustrated in Fig. 1,

and it is the least favorable in active selection because

it may cause confusion in fine-tuning the CNN.

• Patterns D and E: The patches’ predictions are clus-

tered at one end (i.e., 0 or 1) with a higher degree of

certainty. The annotation of these types of candidates

at this stage should be postponed because the curren-

t CNN has most likely predicted them correctly; they

would contribute very little to fine-tuning the current

CNN. However, these candidates may evolve into d-

ifferent patterns worthy of annotation with more fine-

tuning.

• Patterns F and G: They have higher degrees of certain-

ty in some of the patches’ predictions and are asso-

ciated with some outliers in the patches’ predictions.

These types of candidates are valuable because they

are capable of smoothly improving the CNN’s perfor-

mance. Though they may not make significant con-

tributions, they should not cause dramatic harm to the

CNN’s performance.

4. Applications

In this section, we apply our method to three differen-

t applications including colonoscopy frame classification,

polyp detection, and pulmonary embolism (PE) detection.

Our AIFT algorithm is implemented in the Caffe frame-

work [11] based on the pre-trained AlexNet model [12].

In the following, we shall evaluate six variants of AIFT

(active incremental fine-funing) including Diversity1/4 (us-

ing diversity on 1/4 of the patches of each candidate), Di-

versity (using diversity on all the patches of each candi-

date), Entropy1/4, Entropy, (Entropy+Diversity)1/4, (En-

tropy+Diversity), and compare them with IFT Random (in-

cremental fine-tuning with random candidate selection) and

Learning from Scratch in terms of AUC (area under ROC

curve).

4.1. Colonoscopy Frame Classification

Objective quality assessment of colonoscopy procedures

is vital to ensure high-quality colonoscopy. A colonoscopy

video typically contains a large number of non-informative

images with poor colon visualization that are not ideal for

inspecting the colon or performing therapeutic actions. The

larger the fraction of non-informative images in a video, the

lower the quality of colon visualization, thus the lower the

quality of colonoscopy. Therefore, one way to measure the

quality of a colonoscopy procedure is to monitor the quality

of the captured images. Technically, image quality assess-

ment at colonoscopy can be formulated as an image clas-
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Table 1: Relationships among seven prediction patterns and six AIFT methods in active candidate selection. We assume that

a candidate has 11 patches, and their probabilities predicted by the current CNN are listed in Column 2. AIFT Entropyα,

Diversityα, and (Entropy+Diversity)α operate on the top or bottom α percent of the candidate’s patches based on the majority

prediction as described in Sec. 3.3. In this illustration, we choose α to be 1/4, meaning that the selection criterion (Eq. 3) is

computed based on 3 patches within each candidate. The first choice of each method is highlighted in yellow and the second

choice is in light yellow.

Figure 2: Three colonoscopy frames, (a) informative, (b)

non-informative, and (c) ambiguous but labeled “informa-

tive” because it is mostly clear. The ambiguous frames con-

tain both clear and blur parts, and generate noisy labels at

the patch level via automatic data argumentation. Our AIFT

method aims to automatically handle the label noise.

sification task whereby an input image is labeled as either

informative or non-informative.

For the experiments, 4,000 colonoscopy frames are s-

elected from 6 complete colonoscopy videos. A trained

expert then manually labeled the collected images as in-

formative or non-informative. A gastroenterologist further

reviewed the labeled images for corrections. The labeled

frames at the video level are separated into training and

test sets, each containing approximately 2,000 colonoscopy

frames. For data augmentation, we extracted 21 patches

Figure 3: Comparing 8 methods in colonoscopy frame clas-

sification (see text for a detailed analysis).

from each frame.

In all three applications, our AIFT begins with an emp-

ty training dataset and directly uses AlexNet pre-trained on

ImageNet. Fig. 3 shows that at the first step (with 2 labels

queried), IFT Random yields the best performance. There

are two possible reasons: (1) random selection gives the

samples with the positive/negative ratio compatible with the

test dataset; (2) the pre-trained AlexNet gives poor predic-
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tions on our dataset, as it was trained by natural images

instead of biomedical images. Its output probabilities are

mostly confused or even incorrect, yielding poor selection

scores. However, AIFT Diversity1/4, Entropy, Entropy1/4

quickly surpass IFT Random after the first fine-tuning, as

they select important samples for fine-tuning, making the

training process more efficient than just randomly select-

ing from the remaining training dataset. AIFT Entropy and

Diversity1/4 with only 4 label queries can achieve the per-

formance of IFT Random with 18 label queries, and that of

Learning from Scratch with 22 randomly selected frames.

Thereby, more than 75% labeling cost could be saved from

IFT Random and 80% from Learning from Scratch.

AIFT Diversity works even poorer than IFT Random

because of noisy labels generated through data augmenta-

tion. AIFT Diversity strongly favors frames whose predic-

tion pattern resembles Pattern C (see Tab. 1). Naturally, it

will most likely select an ambiguous frame such as Fig. 1

and Fig. 2 (c), because predictions of its patches are highly

diverse. All patches generated from the same frame inherit

the same label as the frame; therefore, at the patch level, the

labels are very noisy for the ambiguous frames. AIFT En-

tropy, Entropy1/4, and Diversity1/4 can automatically ex-

clude the noisy label, naturally yielding outstanding perfor-

mance. Given the outstanding performance of AIFT En-

tropy, Entropy1/4, and Diversity1/4, one may consider com-

bining entropy and diversity, but unfortunately, combina-

tions do not always give better performance, because find-

ing a nice balance between entropy and diversity is tricky as

shown in our example analysis in Tab. 1 and supplementary

material.

4.2. Polyp Detection

Colonoscopy is the preferred technique for colon can-

cer screening and prevention. The goal of colonoscopy is

to find and remove colonic polyps—precursors to colon

cancer—as shown in Fig. 4. For polyp detection, our

database contains 38 short colonoscopy videos from 38 d-

ifferent patients, and they are separated into the training

dataset (21 videos; 11 with polyps and 10 without polyps)

and the testing dataset (17 videos; 8 videos with polyps and

9 videos without polyps). There are no overlaps between

the training dataset and testing dataset at the patient level.

Each colonoscopy frame in the data set comes with a binary

ground truth image. 16300 candidates and 11950 candi-

dates were generated from the training dataset and testing

dataset, respectively.

At each polyp candidate location with the given bound-

ing box, we perform a data augmentation by a factor f ∈
{1.0, 1.2, 1.5}. At each scale, we extract patches after the

candidate is translated by 10 percent of the resized bounding

box in vertical and horizontal directions. We further rotate

each resulting patch 8 times by mirroring and flipping. The

Figure 4: Polyps in colonoscopy videos with different shape

and appearance.

Figure 5: Comparing 8 methods in polyp detection (see text

for a detailed analysis).

Figure 6: Monitor the performance of the proposed method

on the remaining training dataset. Using 5% of the whole

training dataset (800/16300), the CNN can predict almost

perfectly on the remaining 95% dataset.

patches generated by data augmentation belong to the same

candidate.

Fig. 5 shows that AIFT (Entropy+Diversity)1/4 and

Diversity1/4 reach the peak performance with 610 label

queries, while IFT Random needs 5711 queries, indicat-

ing that AIFT can cut nearly 90% of the annotation cost

required by IFT Random. The fast convergence of AIFT

(Entropy+Diversity)1/4 and Diversity1/4 is attributed to the

majority selection method, which can efficiently select the

informative and representative candidates while excluding

those with noisy labels. When the queried number is about

5000, the AIFT Entropy1/4 reaches its peak performance.

The reason is that the entropy can only measure the infor-

mativeness so the queried sample is very likely to be sim-

ilar to each other. It needs more queries to select most
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of the informative candidates. AIFT Diversity and (En-

tropy+Diversity) cannot perform as well as the counterparts

with the majority selection due to noisy labels. Learning

from Scratch never achieves the performance of fine-tuning

even if all training samples are used, which is in agreement

with [24].

To gain further insights, we also monitor the perfor-

mance of the 8 methods on the remaining training dataset.

Each time after we have fine-tuned the previous CNN, we

test it on the remaining training dataset. We have observed

that only 800 candidates are needed to reach the maximum

performance. As is shown in Fig. 6, the candidates selected

by our method, which are only 5% (800/16300) of all the

candidates, can represent the remaining dataset, because in

colonoscopy videos consecutive frames are usually similar

to each other.

4.3. Pulmonary Embolism Detection

Our experiments are based on the PE candidates gener-

ated by the method proposed in [16] and the image repre-

sentation introduced in [23] as shown in Fig. 7. We adop-

t the 2-channel representation because it consistently cap-

tures PEs in cross-sectional and longitudinal views of ves-

sels, achieving greater classification accuracy and acceler-

ating CNN training process. In order to feed the RGB-like

patches into CNN, the 2-channel patches are converted to 3-

channel RGB-like patches by duplicating the second chan-

nel. For experiments, we use a database consisting of 121

CTPA datasets with a total number of 326 PEs. The to-

bogganing algorithm [16] is applied to obtain a crude set

of PE candidates. 6255 PE candidates are generated, of

which 5568 are false positives and 687 are true positives.

To train CNN, we extract patches of 3 different physical

sizes, i.e.,10 mm-, 15 mm-, and 20 mm-wide. Then, we

translate each candidate location along the direction of the

affected vessel 3 times, up to 20% of the physical size of

each patch. Then, data augmentation for training dataset is

performed by rotating the longitudinal and cross-sectional

vessel planes around the vessel axis, resulting in 5 addition-

al variations for each scale and translation.

Finally, a stratified training dataset with 434 true positive

PE candidates and 3406 false positive PE candidates would

be generated for training and incrementally fine-tuning the

CNN and a testing dataset with 253 true positive PE candi-

dates and 2162 false positive PE candidates. The overall PE

probability is calculated by averaging the probabilistic pre-

diction generated for the patches within PE candidate after

data augmentation.

Fig. 8 compares the 8 methods on the testing dataset.

The performance of each method becomes saturated af-

ter 2000 labels queried. AIFT (Entropy+Diversity)1/4 and

Diversity1/4 converge the fastest among the 8 method-

s and yields the best overall performance, attributed to

Figure 7: Five different PEs in the standard 3-channel rep-

resentation, as well as in the 2-channel representation [23] ,

which was adopted in this work because it achieves greater

classification accuracy and accelerates CNN training con-

vergence. The figure is used with permission.

Figure 8: Comparing 8 methods in pulmonary embolism

detection (see text for a detailed analysis).

majority selection method proposed in this work. AIFT

(Entropy+Diversity)1/4 and Diversity1/4 with only 1000 la-

bels required can achieve the performance of random se-

lecting 2200 labels fine-tune from AlexNet (IFT Random).

Note that even AIFT Diversity reach its peak performance

when about 3100 samples queried because PE data set in-

jected little noisy labels. Since entropy favors the uncertain

ambiguous samples, both AIFT Entropy1/4 and Entropy

perform bad at the beginning. IFT Random outperforms

at the first few steps as analysed in Sec. 4.1, but increase s-

lowly overall. Based on this analysis, the cost of annotation

can be cut at least half by the our method.

4.4. Observations on selected patterns

We meticulously monitored the active selection process

and examined the selected candidates, as an example, we in-

clude the top 10 candidates selected by the six AIFT meth-

ods at Iteration 3 in colonoscopy frame classification in the
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supplementary material (see Fig. 10). From this process, we

have observed the following:

• Patterns A and B are dominant in the earlier stages of

AIFT as the CNN has not been fine-tuned properly to

the target domain.

• Patterns C, D and E are dominant in the later stages of

AIFT as the CNN has been largely fine-tuned on the

target dataset.

• The majority selection—AIFT Entropy1/4,

Diversity1/4, or (Entropy+Diversity)1/4—is ef-

fective in excluding Patterns C, D, and E, while AIFT

Entropy (without the majority selection) can handle

Patterns C, D, and E reasonably well.

• Patterns B, F, and G generally make good contributions

to elevating the current CNN’s performance.

• AIFT Entropy and Entropy1/4 favor Pattern A because

of its higher degree of uncertainty as shown in Fig. 10.

• AIFT Diversity1/4 prefers Pattern B while AIFT Di-

versity prefers Pattern C (Fig. 10). This is why AIFT

Diversity may cause sudden disturbances in the CN-

N’s performance and why AIFT Diversity1/4 should

be preferred in general.

• Combing entropy and diversity would be highly desir-

able, but striking a balance between them is not trivial,

because it demands application-specific λ1 and λ2 (see

Eq. 3) and requires further research.

5. Conclusion, discussion and future work

We have developed an active, incremental fine-tuning

method, integrating active learning with transfer learning,

offering several advantages: It starts with a completely

empty labeled dataset, and incrementally improves the CN-

N’s performance through continuous fine-tuning by actively

selecting the most informative and representative samples.

It also can automatically handle noisy labels via majority

selection and it computes entropy and diversity locally on a

small number of patches within each candidate, saving com-

putation time considerably. We have evaluated our method

in three different biomedical imaging applications, demon-

strating that the cost of annotation can be cut by at least

half. This performance is attributed to the advanced active

and incremental capability of our AIFT method.

We based our experiments on the AlexNet architecture

because a pre-trained AlexNet model is available in the

Caffe library and its architecture strikes a nice balance in

depth: it is deep enough that we can investigate the impact

of AIFT on the performance of pre-trained CNNs, and it

is also shallow enough that we can conduct experiments

quickly. Alternatively, deeper architectures such as VG-

G, GoogleNet, and Residual network could have been used

and have shown relatively high performance for challenging

computer vision tasks. However, the purpose of this work is

Figure 9: Positive/negative ratio in the samples selected by

six methods. Yellow bar represents the negatives and blue

bar represents the positives.

not to achieve the highest performance for different biomed-

ical image tasks but to answer the critical question: How to

dramatically reduce the cost of annotation when applying

CNNs in biomedical imaging. The architecture and learn-

ing parameters are reported in the supplementary material.

In the real world, datasets are usually unbalanced. In or-

der to achieve good classification performance, both class-

es of samples should be used in training. Fig. 9 shows

the positive/negative label ratio of the samples selected by

the six methods in each iteration in colonoscopy quali-

ty application. For random selection, the ratio is near-

ly the same as whole training dataset, a reason that IFT

Random has stable performance at the cold-start. AIFT

Diversity1/4, Entropy1/4 and Entropy seem capable of

keeping the dataset balanced automatically, a new observa-

tion that deserves more investigation in the future.

We choose to select, classify and label samples at the

candidate level. Labeling at the patient level would certain-

ly reduce the cost of annotation more but introduce more

severe label noise; labeling at the patch level would cope

with the label noise but impose a much heavier burden on

experts for annotation. We believe that labeling at the candi-

date level offers a sensible balance in our three applications.

Finally, in this paper, we use only entropy and diversi-

ty as the criteria. In theory, a large number of active se-

lection methods may be designed, but we have found that

there are only seven fundamental patterns as summarized

in the Sec. 3.4. As a result, we could conveniently focus on

comparing the seven patterns rather than the many methods.

Multiple methods may be used to select a particular pattern:

for example, entropy, Gaussian distance, and standard de-

viation would seek Pattern A, while diversity, variance, and

divergence look for Pattern C. We would not expect sig-

nificant performance differences among the methods within

each group, resulting in six major selction methods for deep

comparisons based on real-world clinical applications.
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Supplementary material

The AlexNet architecture and learning parameters used in our experiments

As discussed in Sec. 5, the purpose of this work is not to achieve the highest performance for different biomedical image

tasks but to answer the critical question: How to dramatically reduce the cost of annotation when applying CNNs in biomed-

ical imaging. For this purpose, we base our experiments on AlexNet, whose architecture is shown in Table 2, as it is deep

enough that we can investigate the impact of AIFT on the performance of pre-trained CNNs, and also small enough that we

can conduct experiments quickly. Learning parameters used for the training and fine-tuning of AlexNet in our experiments

are summarized in Table 3.

Table 2: The AlexNet architecture used in our experiments. Of note, C is 2 as all

our three applications are binary classifications by nature.

layer type input kernel stride pad output

data input 3x227x227 N/A N/A N/A 3x227x227

conv1 convolution 3x227x227 11x11 4 0 96x55x55

pool1 max pooling 96x55x55 3x3 2 0 96x27x27

conv2 convolution 96x27x27 5x5 1 2 256x27x27

pool2 max pooling 256x27x27 3x3 2 0 256x13x13

conv3 convolution 256x13x13 3x3 1 1 384x13x13

conv4 convolution 384x13x13 3x3 1 1 384x13x13

conv5 convolution 384x13x13 3x3 1 1 256x13x13

pool5 max pooling 256x13x13 3x3 2 0 256x6x6

fc6 fully connected 256x6x6 6x6 1 0 4096x1

fc7 fully connected 4096x1 1x1 1 0 4096x1

fc8 fully connected 4096x1 1x1 1 0 Cx1

Table 3: Learning parameters used for the training and fine-tuning of AlexNet in our experiments. µ is the

momentum, αfc8 is the learning rate of the weights in the last layer, α is the learning rate of the weights

in the rest layers, and γ determines how α decreases over epochs. The learning rate for the bias term is

always set twice as large as the learning rate of the corresponding weights. “Epochs” indicates the number

of epochs used in each AIFT iteration. AIFT1 indicates the first iteration of AIFT while AIFT+ indicates

all the following iterations of AIFT.

Application Method µ α αfc8 γ epochs

Colonoscopy Frame Classification

AIFT1 0.9 0.0001 0.001 0.95 20
AIFT+ 0.9 0.0001 0.0001 0.95 15

Learning from Scratch 0.9 0.0001 0.001 0.95 20

Polyp Detection

AIFT1 0.9 0.001 0.01 0.95 5
AIFT+ 0.9 0.0001 0.001 0.10 3

Learning from Scratch 0.9 0.001 0.01 0.95 10

Pulmonary Embolism Detection

AIFT1 0.9 0.001 0.01 0.95 10
AIFT+ 0.9 0.001 0.01 0.10 5

Learning from Scratch 0.9 0.001 0.01 0.95 20
1 Polyp Detection AIFT Diversity+: 0.9 | 0.001 | 0.01 | 0.50 | 3

7350



Figure 10: Top 10 candidates selected by the six AIFT methods at Iteration 3 in colonoscopy frame classification. Positive

candidates are in red and negative candidates are in blue. Both AIFT Entropy and AIFT Entropy1/4 favor Pattern A because

of its higher degrees of uncertainty. AIFT Diversity1/4 prefers Pattern B while AIFT Diversity suggests Pattern C. With

λ1 = λ2 = 1 (Eq. 3), diversity is dominant in AIFT (Entropy+Diversity) and (Entropy+Diversity)1/4.
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Abstract
Cardiovascular disease (CVD) is the number one killer in the USA, yet it is largely preventable (World Health Organization
2011). To prevent CVD, carotid intima-media thickness (CIMT) imaging, a noninvasive ultrasonography method, has proven
to be clinically valuable in identifying at-risk persons before adverse events. Researchers are developing systems to automate
CIMT video interpretation based on deep learning, but such efforts are impeded by the lack of large annotated CIMT video
datasets. CIMT video annotation is not only tedious, laborious, and time consuming, but also demanding of costly, specialty-
oriented knowledge and skills, which are not easily accessible. To dramatically reduce the cost of CIMT video annotation,
this paper makes three main contributions. Our first contribution is a new concept, called Annotation Unit (AU), which
simplifies the entire CIMT video annotation process down to six simple mouse clicks. Our second contribution is a new
algorithm, called AFT (active fine-tuning), which naturally integrates active learning and transfer learning (fine-tuning) into
a single framework. AFT starts directly with a pre-trained convolutional neural network (CNN), focuses on selecting the most
informative and representative AUs from the unannotated pool for annotation, and then fine-tunes the CNN by incorporating
newly annotated AUs in each iteration to enhance the CNN’s performance gradually. Our third contribution is a systematic
evaluation, which shows that, in comparison with the state-of-the-art method (Tajbakhsh et al., IEEE Trans Med Imaging
35(5):1299–1312, 2016), our method can cut the annotation cost by >81% relative to their training from scratch and >50%
relative to their random selection. This performance is attributed to the several advantages derived from the advanced active,
continuous learning capability of our AFT method.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death
in the USA: every 40 s, one American dies of CVD; nearly
one-half of these deaths occur suddenly and one-third of
them occur in patients younger than 65 years, but CVD is
preventable [1]. To prevent CVD, the key is to identify at-
risk persons, so that scientifically proven and efficacious
preventive care can be prescribed appropriately. Carotid
intima-media thickness (CIMT) imaging, a noninvasive
ultrasonography method, has proven to be clinically
valuable for predicting individual CVD risk [8, 22, 31]. It
quantifies subclinical atherosclerosis, adds predictive value
to traditional risk factors (e.g., the Framingham Risk Score),
and has several advantages over computed tomography
(CT) coronary artery calcium score: safer (no radiation
exposure), more sensitive in a young population, and
more accessible to the primary care setting. However, the
CIMT imaging protocol (see the “CIMT Imaging Protocol”
section) requires to acquire four videos for each subject,
and interpretation of each CIMT video involves three
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Fig. 1 End-diastolic ultrasound frame (EUF), showing a longitudinal
view of a common carotid artery in an ultrasound B-scan image. EUFs
are selected based on the cardiac cycle indicator, a black line, which
indicates to where in the cardiac cycle the current frame corresponds.
CIMT is the distance between the lumen-intima interface (in green)
and the media-adventitia interface (in red) at an EUF, and it is deter-
mined in a region of interest (ROI) approximately 1 cm distal from the
carotid bulb at the EUF. In a CIMT exam, the sonographer examines
the common carotid arteries on both sides of the neck from the two
angles, yielding 4 CIMT ultrasound videos for each subject. Interpret-
ing each CIMT video involves three manual steps: (1) select 3 EUFs in

each video based on the cardiac cycle indicator; (2) localize an ROI in
each selected EUF according to the carotid bulb; (3) trace the lumen-
intima and the media-adventitia interfaces within the localized ROI
and compute the minimum, maximum, and average of the distance
between the traced lumen-intima and the media-adventitia interfaces.
The final CIMT report of a subject is a statistical summary of all CIMT
measurements on the 12 (4×3) EUFs from the 4 CIMT videos acquired
for the subject. This figure is used with permission [28] under IEEE
license number 4407260599014

manual steps (illustrated Fig. 1), which are not only tedious
and laborious but also subjective to large interoperator
variability if guidelines are not properly followed, hindering
the widespread utilization of CIMT in clinical practice.
Therefore, it is highly desirable to have a system that can
automate the CIMT video interpretation.

The tedious and laborious manual operations also mean
significant work in expert annotation when developing such
systems based on machine learning. This paper is not to
develop such a system but rather to present a new idea: how
to minimize the cost of expert annotation for building such
systems that can automate CIMT video interpretation based
on deep learning. In this research, we make the following
three contributions:

Our first contribution is a new concept, called Annotation
Unit (AU), which naturally groups the objects to be
annotated into sets, and all the objects in each set can
be conveniently labeled once with as few operations as
possible. This concept significantly simplifies the entire

CIMT video annotation process down to six mouse clicks as
detailed in the “Annotation Units” section and illustrated in
Fig. 2. Our second contribution is a new algorithm, called
AFT (active fine-tuning), which naturally integrates active
learning and transfer learning into a single framework (see
Algorithm 1) to focus on selecting the most informative
and representative AUs for annotation, thereby dramatically
reducing the cost of annotation in CIMT. AFT starts
directly with a pre-trained CNN to seek “worthy” samples
from the unannotated pool for annotation, and then fine-
tunes the CNN by incorporating newly annotated samples
in each iteration to enhance the CNN’s performance
gradually. Compared with conventional active learning,
AFT offers four advantages: (1) it starts with a completely
empty labeled dataset, requiring no initial seed-labeled
training samples; (2) it incrementally improves the learner
through fine-tuning rather than repeatedly re-training; (3)
it can automatically handle multiple classes; and (4) it is
applicable to many biomedical image analysis tasks [37],
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Fig. 2 We simplify the annotation process for each CIMT video down
to six mouse clicks. As illustrated, the annotation of EUF selection is
made at the video level with three mouse clicks on the three R waves
of an ECG signal, while for ROI localization, the annotation is made at
the frame level with one mouse click at the center of the ROI. Manually
tracing the lumen-intima interface or the media-adventitia interface

is tedious and laborious. To reduce workload, we eliminate the trac-
ing by two mouse clicks on the lumen-intima and media-adventitia
interfaces between two vertical dashed lines, only when requested by
our proposed AFT algorithm (see the “Annotation Units” section for
details)

including detection, classification, and segmentation. Our
third contribution is a systematic evaluation of our proposed
method, which demonstrates that, with AFT, the cost
of annotation for CIMT can be cut by at least half in
comparison with FT (fine-tuning with random selection)
and by >81% relative to their training from scratch
as detailed in the “Experiments” section. This result
is significant for enhancing the system performance for
automating CIMT video interpretation [28, 34]. Given the
current performance of our system [28], it is very difficult
to improve its performance by randomly annotating new
CIMT videos. We must focus on annotating the most
informative and representative videos; otherwise, we will
have to annotate many new videos but gain very little in
boosting its performance.

CIMT Imaging Protocol

The CIMT exams utilized in our research were performed
with B-Mode ultrasound using an 8–14-MHz linear array
transducer utilizing fundamental frequency only (Acuson
SequoiaTM, Mountain View, CA, USA). The carotid
screening protocol begins with scanning bilateral carotid
arteries in a transverse manner from the proximal aspect
to the proximal internal and external carotid arteries. The
probe is then turned to obtain the longitudinal view of
the distal common carotid artery (Fig. 1). The sonographer

optimizes the 2D images of the lumen-intima and media-
adventitia interfaces at the level of the common carotid
artery by adjusting overall gain, time gain, compensation,
and focus position. Once the parameters are optimized,
the sonographer captures two CIMT videos focused on
the common carotid artery from two optimal angles of
incidence, and ensures that each CIMT video covers at least
three cardiac cycles. The same procedure is repeated for the
other side of the neck, resulting in a total of four CIMT
videos for each subject.

CIMT stands for carotid intima-media thickness, but
in the literature, it may refer to the imaging method,
the ultrasonography examination, or the examination
results. For clarify, we define some terms used in this
paper. By CIMT imaging, we refer to the noninvasive
ultrasonography examination procedure described above,
yielding four CIMT videos for each subject. The CIMT
video interpretation is a process to analyze all four
CIMT videos acquired for a subject and produce a
CIMT report, which includes a statistical summary of all
CIMT measurements performed on the three end-diastolic
ultrasound frames (EUFs) selected from each of the four
CIMT videos acquired for the subject. EUFs are selected
based on the cardiac cycle indicator as shown in Fig. 1,
and there are 12 (= 4 × 3) EUFs for each subject. A
CIMT measurement on an EUF includes the minimum,
maximum, and average of the distance between the lumen-
intima and the media-adventitia interfaces (see Fig. 1),
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thereby requiring the tracing of lumen-intima and the
media-adventitia interfaces. The interpretation of each
CIMT video involves three manual steps: (1) select three
EUFs in each video based on the cardiac cycle indicator;
(2) localize an ROI in each selected EUF according to
the carotid bulb; and (3) trace the lumen-intima and the
media-adventitia interfaces within the localized ROI and
compute the minimum, maximum, and average of the
distance between the traced lumen-intima and the media-
adventitia interfaces. Certainly, we may adopt the full CIMT
interpretation process to annotate CIMT videos as required
by machine learning algorithms. However, to dramatically
reduce the annotation efforts, we will introduce a separate
CIMT video annotation process in conjunction with our
proposed AFT algorithm.

RelatedWork

Carotid Intima-Media Thickness Video
Interpretation

As discussed in the “CIMT Imaging Protocol” section, to
measure CIMT, the lumen-intima and the media-adventitia
interfaces must be traced first. Naturally, the earlier
approaches are focused on analyzing the intensity profile
and distribution, computing the gradient, or combining var-
ious edge properties through dynamic programming [19].
Recent approaches [5, 20] are mostly based on active con-
tours (a.k.a snakes) or their variations [15]. Most recently,
researchers are fucusing on developing algorithms based on
machine learning for CIMT video interpretation. For exam-
ple, Menchón-Lara et al. employed a committee of standard
multi-layer perceptron in [24] and a single standard multi-
layer perceptron with an auto-encoder in [25] for CIMT
video interpretation. Shin et al. [28] presented a unified
framework based on convolutional neural networks (CNNs)
for automating the entire CIMT video interpretation pro-
cess, and Tajbakhsh et al. [34] further demonstrated that
the measurement errors are within the interobserver vari-
ation. However, none of the aforementioned publications
has mentioned the cost of expert annotation in their system
development. To our knowledge, we are among the first to
minimize the cost of annotation by integrating active learn-
ing with the fine-tuning of CNNs for building systems that
automate the CIMT video interpretation.

Transfer Learning for Medical Imaging

Gustavo et al. [3] replaced the fully connected layers
of a pre-trained CNN with a new logistic layer and

trained only the appended layer with the labeled data
while keeping the rest of the network the same, yielding
promising results for classification of unregistered multi-
view mammogram. In [4], a fine-tuned pre-trained CNN
was applied for localizing standard planes in ultrasound
images. Gao et al. [7] fine-tuned all layers of a pre-
trained CNN for automatic classification of interstitial lung
diseases. In [27], Shin et al. used fine-tuned pre-trained
CNNs to automatically map medical images to document-
level topics, document-level sub-topics, and sentence-level
topics. In [23], fine-tuned pre-trained CNNs were used to
automatically retrieve missing or noisy cardiac acquisition
plane information from magnetic resonance imaging and
predict the five most common cardiac views. Schlegl et
al. [26] explored unsupervised pre-training of CNNs to
inject information from sites or image classes for which no
annotations were available, and showed that such across-
site pre-training improved classification accuracy compared
to random initialization of the model parameters. Several
researchers [9, 12, 33] have demonstrated that fine-tuning
offers better performance and is more robust than training
from scratch, especially in biomedical imaging tasks that
labels are not easily accessible. However, none of these
works involves active selection processes as our AFT
method does, and they all performed one-time fine-tuning,
that is, simply fine-tuned a pre-trained CNN just once with
available training samples.

Integrating Active Learning with Deep Learning

Research in this area is sparse: Wang and Shang [35] may
be the first to incorporate active learning with deep learning,
and based their approach on stacked restricted Boltzmann
machines and stacked auto-encoders. A similar idea was
reported for hyperspectral image classification [17]. Stark et
al. [30] applied active learning to improve the performance
of CNNs for CAPTCHA recognition, while Al Rahhal et
al. [2] exploited deep learning for active electrocardiogram
classification. All these approaches are fundamentally
different from our AFT approach in that in each iteration,
they all repeatedly re-trained the learner from scratch while
we fine-tune pre-trained CNNs, dramatically cutting the
cost of annotation further by combining active learning
with fine-tuning. Yang et al. [36] adopted active learning
into fully convolutional network (FCN) [21] by extracting
representative samples into training dataset but training
a segmentation network requiring accurate object contour
while our ROI localization is only a coarse-labeled location
(a single click around the center of the ROI as shown in
yellow in Fig. 2). Most recently, Zhou et al. [37] integrated
active learning and deep learning based on continuous fine-
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tuning but their method is limited to binary classification
and requires that all patches within each AU share the same
label. Therefore, their method is not applicable to this CIMT
application, which requires three-way classifiers.

The ProposedMethod

The aim of this research is not to develop methods for
automating the interpretation process, rather to investigate
how to minimize the cost of expert annotation required
for creating such systems that can automate CIMT video
interpretation based on CNNs.

Annotation Units

We could follow the same process as illustrated in
Fig. 1 [28] to create the ground truth as required to train
CNNs. However, these three steps, and in particular the
CIMT measurement, are not only tedious and laborious
but also subjective to large inter-operator variability if
guidelines are not properly followed. To accelerate the
annotation process, we introduce a new concept, Annotation
Unit (AU), which is defined as a set of objects that the
annotator can associate with multiple labels at a time with
as few operations as possible during the annotation process.
The benefits of AU have two folds. First, the objects to be
annotated are grouped into sets, and each set can be easily
labeled with as few operations as possible. Taking CIMT
measurement annotation as an example, instead of tracing
the entire lumen-intima and media-adventitia interfaces
within an ROI, we define an one-pixel-wide column in the
ROI as an AU, so that all pixels within the column can be
labeled once with two mouse clicks: one on the lumen-
intima interface and one on the media-adventitia interface.
Second, with the aforementioned properties, all the objects
in an AU can be correctly associated with their labels once
after the required operations. Using the CIMT measurement
example again, after the two clicks, the first clicked pixel is
associated with class 1 (lumen-intima), the second clicked
pixel is with class 2 (media-adventitia), and all the rest

pixels are with class 0 (background). It should be noticed
that when all AUs are labeled, the interpretation quality is
identical or at least similar to the standard process in [28],
but our goal is to annotate as few AUs as possible during the
annotation process; therefore, the annotation process may
not result in a complete interpretation for a subject. In other
words, the annotation process is designed for annotation (as
little as possible) only, and it is not intended for clinical use,
which requires a complete interpretation for each subject.

With the definition of AU, the CIMT video annotation
process can be simplified down to just six mouse clicks as
illustrated in Fig. 2. The annotation for EUF selection is
made at the video level. With three mouse clicks on the
R waves of the ECG signal, three end-diastolic ultrasound
frames (EUFs) are determined and annotated as class 1,
while all the rest frames are automatically labeled as
class 0 (non-EUF). For ROI localization in an EUF, the
annotation is made at the frame level with one mouse
click on the EUF, giving the center of the ROI. Given the
anatomical constraint that ROI should be approximately
1 cm distal from carotid bulb, the latter’s location can
be automatically estimated. For data argumentation and
classification robustness, all pixels within 15 mm from
the selected center are considered as class 1 (ROI), and
those within 15 mm from the estimated bulb location are
as class 2, while all the rest pixels belong to class 0
automatically. For CIMT measurement, it would be too
tedious and laborious for the annotator to manually trace
the lumen-intima and media-adventitia interfaces. To reduce
workload, two vertical dashed lines are drawn to indicate an
AU (see Fig. 2) and the annotator makes two mouse clicks
on the two interfaces between the two dashed lines. The
top pixel and bottom pixel are regarded as the lumen-intima
interface (class 1) and media-adventitia interface (class
2), respectively, while all the rest pixels between the two
lines are considered as background (class 0). The optimal
distance between the two dashed lines can be determined
based on experiments, and we set it at one pixel (0.99
mm) currently. We summarize the objects of AU, annotation
labels, and required operations per AU in each step of CIMT
video annotation process in Table 1.

Table 1 The AU, annotated labels, and required operations per AU in each step of CIMT video annotation process

EUF selection ROI localization CIMT measurement

AU ECG signal EUF frame One-pixel-wide column in ROI

Labels EUF ROI Lumen-intima interface

Non-EUF Carotid bulb Lumen-intima interface

Background Background

Operations 3 clicks 1 click 2 clicks



J Digit Imaging

Active Fine-Tuning

Mathematically, given a set of AUs, U = {C1, C2, ..., Cn},
where n is the number of AUs, and each Ci =
{x1

i , x2
i , ..., xm

i } is associated with m objects, our AFT
algorithm iteratively selects a subset of AUs for annotation
as illustrated in Algorithm 1. From annotation, each object
(in each selected AU) will be associated with one of
Y number of possible classes. At the beginning, the
labeled dataset L is empty; we take a pre-trained CNN
from ImageNet [6] (e.g., AlexNet) as initialization of the
network and run it on U to select b number of AUs
for labeling. The newly labeled AUs will be incorporated
into L to fine-tune the CNN until the performance is
satisfactory. From our experiments, we have found that
continuously fine-tuning the CNN, which has been fine-
tuned in the previous iteration, with enlarged datasets
converges faster than repeatedly fine-tuning the original pre-
trained CNN, but the latter offers better generalization. We
have also found that continuously fine-tuning the CNN with
only newly labeled data demands careful meta-parameter
adjustments. Therefore, in this paper, our AFT fine-tunes
the original pre-trained CNN with the labeled dataset
enlarged with the newly labeled data in each iteration to
achieve better performance. To determine the “worthiness”
of an AU, we use entropy, as intuitively, entropy captures the

classification certainty—higher uncertainty values denote
higher degrees of information. Assuming the prediction of
object x

j
i in Ci by the current CNN is p

j
i , we define the

entropy of Ci as the average information furnished by all
objects x

j
i in Ci from the unlabeled pool:

Ei = − 1

m

m∑

j=1

Y∑

k=1

p
j,k
i log p

j,k
i . (1)

Experiments

In our experiments, we use a fully interpreted (annotated)
database and simulate the active learning process (Algo-
rithm 1) by retrieving labels for the samples selected based
on selection criterion as present in Eq. 1. In this way, our
approach can be validated without “physically” involving
the experts in the loop.

Dataset

Due to space, we focus on the two most important
tasks: ROI localization and CIMT measurement. Our AFT
algorithm is implemented in Caffe [14] based on the pre-
trained AlexNet [16]. In the following, we shall compare
our method AFT (active fine-tuning) with the state-of-the-
art method [33]: FT (fine-tuning with random selection)
and LS (learning from scratch) in each task. We utilize 23
patients from UFL MCAEL CIMT research database [13].
Each patient has four videos (two on each side) [31],
resulting in a total of 92 CIMT videos with 8,021 frames.
Each video covers at least three cardiac cycles and thus a
minimum of three EUFs. We randomly divide the CIMT
videos at patient level into training, validation, and test
datasets (no overlaps). The training dataset contains 44
CIMT videos of 11 patients with a total of 4,070 frames,
the validation dataset contains 4 videos of 1 patient with
386 frames, and the test dataset contains 44 CIMT videos
of 11 patients with 3,565 frames. From the perspective of
active learning, the training dataset is the “unlabeled pool”
for active selection; when an AU is selected, the label of
each object will be provided. The fined-tuned CNN from
each iteration is always evaluated with the test dataset, so
that we can monitor the performance enhancement across
AUs. Please note that we do not need many patients as
we have many CIMT frames for each patient and we can
generate a large number of patches for training deep models
in each experiment. For example, in our ROI localization
experiments, one AU practically provides 1715 labeled
patches (297 as background, 709 as bulb, and 709 as ROI).
Random translation and flipping data augmentation were
applied when training the models.
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Fig. 3 ROI localization process (see text for details). The detected ROI, ground truth, and carotid bulb are in yellow, red, and green, respectively.
The ROI is constrained by green circle with a 1-cm radius

ROI Localization

Accurate localization of the ROI is challenging because,
as illustrated by Shin et al. [28] in their figure 1, no
notable differences can be observed in image appearance
among the ROIs on the far wall of the carotid artery. To
overcome this challenge, we use the location of the carotid
bulb as a contextual constraint. We choose this constraint
for two reasons: (1) the carotid bulb appears as a distinct
dark area in the ultrasonographic frame and thus can be
uniquely identified; and (2) according to the consensus
statement of the American Society of Electrocardiography
for Cardiovascular Risk Assessment [31], the ROI should
be placed approximately 1 cm from the carotid bulb on the
far wall of the common carotid artery. The former motivates
the use of the carotid bulb location as a constraint from a
technical point of view, and the latter justifies this constraint
from a clinical standpoint. We incorporate this constraint
by simultaneously localizing both ROI and carotid bulb
and then refine the estimated location of the ROI given the
location of the carotid bulb. As illustrated in Fig. 3, we first
determine the location of the carotid bulb as the centroid
of the largest connected component within the confidence
map for the carotid bulb and then localize the centroid of
constrained ROI area using the following formula:

lroi =
∑

p∈C∗ M(p) · p · I (p)
∑

p∈C∗ M(p) · I (p)
(2)

where M denotes the confidence map of being the ROI, C∗
is the largest connected component in M that is nearest to
the carotid bulb, and I (p) is an indicator function for pixel
p = [px, py] that is defined as

I (p) =
{

1, if ‖p − lcb‖ < 1 cm
0, otherwise

(3)

where lcb is the centroid of the carotid bulb. Basically, the
indicator function excludes the pixels located farther than
1 cm from the carotid bulb location. This choice of the
distance threshold is motivated by the fact that the ROI is
located within 1 cm to the right of the carotid bulb.

CIMTMeasurement

To automatically measure intima-media thickness, the
lumen-intima and media-adventitia interfaces of the carotid
artery must be detected within the ROI. Although the
lumen-intima interface is relatively easy to detect, the
detection of the media-adventitia interface is challenging,
because of the faint image gradients around its boundary.
We formulate this interface segmentation problem as a
three-class classification task with the goal to classify each
pixel within the ROI into thee categories: (1) a pixel
on the lumen-intima interface, (2) a pixel on the media-
adventitia interface, and (3) a background pixel. During
testing, the trained CNN is applied to a given test ROI in a
convolutional manner, generating two confidence maps with
the same size as the ROI. The first confidence map shows
the probability of each pixel being on the lumen-intima
interface; the second confidence map shows the probability
of each pixel being on the media-adventitia interface. A
relatively thick high-probability band is apparent along
each interface, which hinders the accurate measurement of
intima-media thickness. To thin the detected interfaces, we
scan the confidence map column by column, searching for
the rows with the maximum response for each of the two
interfaces. By doing so, we obtain a 1-pixel-thick boundary
with a step-like shape around each interface. To further
refine the boundaries, we use two active contour models
(a.k.a., snakes) [18], one for the lumen-intima interface and
one for the media-adventitia interface. The open snakes are
initialized with the current step-like boundaries and then
deform solely based on the probability maps generated by
the CNN rather than the original image content.

Results and Discussions

To evaluate AFT performance on ROI localization, in each
iteration, we compute two criteria across all test patients: (1)
the average ROI localization error (the Euclidean distance
between the detected ROI and expert-annotated ROI) and
(2) the predicted confidence of each expert-annotated ROI.
Figure 4a shows the average ROI localization error over
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Fig. 4 a The average ROI localization errors of AFT, FT, and LS on
the test patients over 30 AUs. The ROI confidence predicted by AFT b
and FT c, respectively, on the test patients over 30 AUs. The trendlines

denote active selection (in red) and random selection (in blue), and they
are duplicated with different transparencies for their easy performance
comparison in b and c

30 AUs (automatically generating 51,450 labeled patches)
demonstrating that our AFT dramatically reduces the
labeling cost in comparison with FT and LS. Black dashed
line represents the ROI localization error of LS, where
the CNN was trained with the entire training dataset (132
AUs) without fine-tuning. We should note that at the earlier
stage (less than 12 AUs), FT learns faster and yields better
performance than AFT, a well-known phenomenon in active
learning [10]. However, AFT quickly surpasses FT after a
few times of fine-tuning. With only 24 AUs, AFT can nearly
achieve the performance of LS with 132 AUs; with 15 AUs,
AFT achieves that of FT with 30 annotations. Thereby, the
cost of annotation can be cut by at least half in comparison
with FT and by more than 81% in comparison with LS. To
increase the robustness, the predicted confidence of each
expert-annotated ROI is computed as the average of the
predicted scores of all pixels within 15 pixels from the ROI
center. Figure 4b, c is the box plots of the ROI confidence
across all the test patients. Clearly, the more AUs used from
the training dataset, the higher the ROI confidence with the
test dataset. In terms of mean and standard deviation of ROI
confidence, with just 9 AUs, AFT offers the same confidence

as FT at 30 AUs. Moreover, ROI confidence from AFT can
quickly converge to 1.0, while even using 30 AUs, FT still
has many outliers.

We evaluate our AFT on CIMT measurement in the
same way as in ROI localization. However, due to
the post-processing with snakes, AFT and FT give the
similar localization errors at the lumen-intima and media-
adventitia interfaces; therefore, we focus on the CIMT
measurement confidence. Figure 5 is the box plot of the
CIMT measurement confidence on the test dataset. AFT
significantly outperforms FT, especially when a limited
number of training samples are used. For example, actively
selecting only 7 AUs can approximate the performance by
randomly selecting 14 AUs. In addition, with only 7 AUs
selected by our AFT algorithm, we can nearly achieve the
accuracy offered by the entire dataset (12,144 AUs).

In our experiments, we adopted the AlexNet architecture
because a pre-trained AlexNet model is available in the
Caffe library and its architecture strikes a nice balance in
depth: it is deep enough that we can investigate the impact of
AFT on the performance of pre-trained CNNs, and it is also
shallow enough that we can conduct experiments quickly.

Fig. 5 The CIMT measurement
confidence predicted by AFT
and FT, respectively, on the test
patients over 30 AUs
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Alternatively, deeper architectures, such as VGG [29],
GoogleNet [32], and ResNet [11], could have been used
and have shown relatively high performance for challenging
computer vision tasks. However, the purpose of this work is
not to achieve the highest performance for the CIMT video
interpretation but to answer a critical question: How much
the cost of annotation can be reduced when applying CNNs
for CIMT video interpretation. For this purpose, AlexNet
is a reasonable architectural choice. Nevertheless, we plan
to investigate the performance of AFT on different deep
architectures. Also, our algorithm aims to select the most
informative and representative AUs for annotation with our
proposed six-click strategy. As a result, the process will
not generate full interpretations for all patients, that is, the
six-click strategy is only applicable in the context of our
proposed algorithm for reducing annotation efforts (as little
as possible), and it is not designed and should not be used for
clinical practice, where a complete interpretation is required
for each patient.

Conclusions

We have developed an active fine-tuning method for
CIMT video interpretation. It integrates active learning
and transfer learning, offering two advantages: It starts
with a completely empty labeled dataset, and incrementally
improves the CNN’s performance via fine-tuning by
actively selecting the most informative and representative
samples. To accelerate the CIMT video annotation process,
we introduced a new concept, Annotation Unit, which
simplifies the CIMT video annotation process down to
six mouse clicks. We have demonstrated that the cost of
CIMT video annotation can be cut by at least half. This
performance is attributed to the advanced active fine-tuning
capability of our AFT method. In the future, we plan
to explore possible algorithms in assisting sonographers
to acquire high-quality CIMT videos more quickly and
integrate our AFT algorithm into the process for collecting
the most informative and representative CIMT videos to
enhance our system performance.
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Abstract. In this paper, we present UNet++, a new, more powerful ar-
chitecture for medical image segmentation. Our architecture is essentially
a deeply-supervised encoder-decoder network where the encoder and de-
coder sub-networks are connected through a series of nested, dense skip
pathways. The re-designed skip pathways aim at reducing the semantic
gap between the feature maps of the encoder and decoder sub-networks.
We argue that the optimizer would deal with an easier learning task when
the feature maps from the decoder and encoder networks are semantically
similar. We have evaluated UNet++ in comparison with U-Net and wide
U-Net architectures across multiple medical image segmentation tasks:
nodule segmentation in the low-dose CT scans of chest, nuclei segmen-
tation in the microscopy images, liver segmentation in abdominal CT
scans, and polyp segmentation in colonoscopy videos. Our experiments
demonstrate that UNet++ with deep supervision achieves an average
IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net, respectively.

1 Introduction

The state-of-the-art models for image segmentation are variants of the encoder-
decoder architecture like U-Net [9] and fully convolutional network (FCN) [8].
These encoder-decoder networks used for segmentation share a key similarity:
skip connections, which combine deep, semantic, coarse-grained feature maps
from the decoder sub-network with shallow, low-level, fine-grained feature maps
from the encoder sub-network. The skip connections have proved effective in
recovering fine-grained details of the target objects; generating segmentation
masks with fine details even on complex background. Skip connections is also
fundamental to the success of instance-level segmentation models such as Mask-
RCNN, which enables the segmentation of occluded objects. Arguably, image
segmentation in natural images has reached a satisfactory level of performance,
but do these models meet the strict segmentation requirements of medical im-
ages?

Segmenting lesions or abnormalities in medical images demands a higher level
of accuracy than what is desired in natural images. While a precise segmentation
mask may not be critical in natural images, even marginal segmentation errors in
medical images can lead to poor user experience in clinical settings. For instance,
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the subtle spiculation patterns around a nodule may indicate nodule malignancy;
and therefore, their exclusion from the segmentation masks would lower the
credibility of the model from the clinical perspective. Furthermore, inaccurate
segmentation may also lead to a major change in the subsequent computer-
generated diagnosis. For example, an erroneous measurement of nodule growth
in longitudinal studies can result in the assignment of an incorrect Lung-RADS
category to a screening patient. It is therefore desired to devise more effective
image segmentation architectures that can effectively recover the fine details of
the target objects in medical images.

To address the need for more accurate segmentation in medical images, we
present UNet++, a new segmentation architecture based on nested and dense
skip connections. The underlying hypothesis behind our architecture is that the
model can more effectively capture fine-grained details of the foreground ob-
jects when high-resolution feature maps from the encoder network are gradually
enriched prior to fusion with the corresponding semantically rich feature maps
from the decoder network. We argue that the network would deal with an easier
learning task when the feature maps from the decoder and encoder networks are
semantically similar. This is in contrast to the plain skip connections commonly
used in U-Net, which directly fast-forward high-resolution feature maps from the
encoder to the decoder network, resulting in the fusion of semantically dissim-
ilar feature maps. According to our experiments, the suggested architecture is
effective, yielding significant performance gain over U-Net and wide U-Net.

2 Related Work

Long et al. [8] first introduced fully convolutional networks (FCN), while U-
Net was introduced by Ronneberger et al. [9]. They both share a key idea: skip
connections. In FCN, up-sampled feature maps are summed with feature maps
skipped from the encoder, while U-Net concatenates them and add convolutions
and non-linearities between each up-sampling step. The skip connections have
shown to help recover the full spatial resolution at the network output, mak-
ing fully convolutional methods suitable for semantic segmentation. Inspired
by DenseNet architecture [5], Li et al. [7] proposed H-denseunet for liver and
liver tumor segmentation. In the same spirit, Drozdzalet al. [2] systematically
investigated the importance of skip connections, and introduced short skip con-
nections within the encoder. Despite the minor differences between the above
architectures, they all tend to fuse semantically dissimilar feature maps from
the encoder and decoder sub-networks, which, according to our experiments,
can degrade segmentation performance.

The other two recent related works are GridNet [3] and Mask-RCNN [4].
GridNet is an encoder-decoder architecture wherein the feature maps are wired in
a grid fashion, generalizing several classical segmentation architectures. GridNet,
however, lacks up-sampling layers between skip connections; and thus, it does not
represent UNet++. Mask-RCNN is perhaps the most important meta framework
for object detection, classification and segmentation. We would like to note that
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Fig. 1: (a) UNet++ consists of an encoder and decoder that are connected
through a series of nested dense convolutional blocks. The main idea behind
UNet++ is to bridge the semantic gap between the feature maps of the encoder
and decoder prior to fusion. For example, the semantic gap between (X0,0,X1,3)
is bridged using a dense convolution block with three convolution layers. In the
graphical abstract, black indicates the original U-Net, green and blue show dense
convolution blocks on the skip pathways, and red indicates deep supervision.
Red, green, and blue components distinguish UNet++ from U-Net. (b) Detailed
analysis of the first skip pathway of UNet++. (c) UNet++ can be pruned at
inference time, if trained with deep supervision.

UNet++ can be readily deployed as the backbone architecture in Mask-RCNN
by simply replacing the plain skip connections with the suggested nested dense
skip pathways. Due to limited space, we were not able to include results of
Mask RCNN with UNet++ as the backbone architecture; however, the interested
readers can refer to the supplementary material for further details.

3 Proposed Network Architecture: UNet++

Fig. 1a shows a high-level overview of the suggested architecture. As seen,
UNet++ starts with an encoder sub-network or backbone followed by a decoder
sub-network. What distinguishes UNet++ from U-Net (the black components in
Fig. 1a) is the re-designed skip pathways (shown in green and blue) that connect
the two sub-networks and the use of deep supervision (shown red).
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3.1 Re-designed skip pathways

Re-designed skip pathways transform the connectivity of the encoder and de-
coder sub-networks. In U-Net, the feature maps of the encoder are directly re-
ceived in the decoder; however, in UNet++, they undergo a dense convolution
block whose number of convolution layers depends on the pyramid level. For
example, the skip pathway between nodes X0,0 and X1,3 consists of a dense
convolution block with three convolution layers where each convolution layer
is preceded by a concatenation layer that fuses the output from the previous
convolution layer of the same dense block with the corresponding up-sampled
output of the lower dense block. Essentially, the dense convolution block brings
the semantic level of the encoder feature maps closer to that of the feature maps
awaiting in the decoder. The hypothesis is that the optimizer would face an
easier optimization problem when the received encoder feature maps and the
corresponding decoder feature maps are semantically similar.

Formally, we formulate the skip pathway as follows: let xi,j denote the output
of node Xi,j where i indexes the down-sampling layer along the encoder and j
indexes the convolution layer of the dense block along the skip pathway. The
stack of feature maps represented by xi,j is computed as

xi,j =

{
H
(
xi−1,j

)
, j = 0

H
([[

xi,k
]j−1

k=0
,U(xi+1,j−1)

])
, j > 0

(1)

where function H(·) is a convolution operation followed by an activation func-
tion, U(·) denotes an up-sampling layer, and [ ] denotes the concatenation layer.
Basically, nodes at level j = 0 receive only one input from the previous layer
of the encoder; nodes at level j = 1 receive two inputs, both from the encoder
sub-network but at two consecutive levels; and nodes at level j > 1 receive j + 1
inputs, of which j inputs are the outputs of the previous j nodes in the same
skip pathway and the last input is the up-sampled output from the lower skip
pathway. The reason that all prior feature maps accumulate and arrive at the
current node is because we make use of a dense convolution block along each
skip pathway. Fig. 1b further clarifies Eq. 1 by showing how the feature maps
travel through the top skip pathway of UNet++.

3.2 Deep supervision

We propose to use deep supervision [6] in UNet++, enabling the model to op-
erate in two modes: 1) accurate mode wherein the outputs from all segmenta-
tion branches are averaged; 2) fast mode wherein the final segmentation map
is selected from only one of the segmentation branches, the choice of which de-
termines the extent of model pruning and speed gain. Fig. 1c shows how the
choice of segmentation branch in fast mode results in architectures of varying
complexity.

Owing to the nested skip pathways, UNet++ generates full resolution feature
maps at multiple semantic levels, {x0,j , j ∈ {1, 2, 3, 4}}, which are amenable to



UNet++: A Nested U-Net Architecture 5

Table 1: The image segmentation datasets used in our experiments.
Dataset Images Input Size Modality Provider

cell nuclei 670 96×96 microscopy Data Science Bowl 2018

colon polyp 7,379 224×224 RGB video ASU-Mayo [10,11]

liver 331 512×512 CT MICCAI 2018 LiTS Challenge

lung nodule 1,012 64×64×64 CT LIDC-IDRI [1]

Table 2: Number of convolutional kernels in U-Net and wide U-Net.
encoder / decoder X0,0/X0,4 X1,0/X1,3 X2,0/X2,2 X3,0/X3,1 X4,0/X4,0

U-Net 32 64 128 256 512
wide U-Net 35 70 140 280 560

deep supervision. We have added a combination of binary cross-entropy and dice
coefficient as the loss function to each of the above four semantic levels, which
is described as:

L(Y, Ŷ ) = − 1

N

N∑
b=1

(
1

2
· Yb · log Ŷb +

2 · Yb · Ŷb

Yb + Ŷb

)
(2)

where Ŷb and Yb denote the flatten predicted probabilities and the flatten ground
truths of bth image respectively, and N indicates the batch size.

In summary, as depicted in Fig. 1a, UNet++ differs from the original U-Net
in three ways: 1) having convolution layers on skip pathways (shown in green),
which bridges the semantic gap between encoder and decoder feature maps; 2)
having dense skip connections on skip pathways (shown in blue), which improves
gradient flow; and 3) having deep supervision (shown in red), which as will be
shown in Section 4 enables model pruning and improves or in the worst case
achieves comparable performance to using only one loss layer.

4 Experiments

Datasets: As shown in Table 1, we use four medical imaging datasets for model
evaluation, covering lesions/organs from different medical imaging modalities.
For further details about datasets and the corresponding data pre-processing,
we refer the readers to the supplementary material.

Baseline models: For comparison, we used the original U-Net and a customized
wide U-Net architecture. We chose U-Net because it is a common performance
baseline for image segmentation. We also designed a wide U-Net with similar
number of parameters as our suggested architecture. This was to ensure that
the performance gain yielded by our architecture is not simply due to increased
number of parameters. Table 2 details the U-Net and wide U-Net architecture.

Implementation details: We monitored the Dice coefficient and Intersection
over Union (IoU), and used early-stop mechanism on the validation set. We also

https://www.kaggle.com/c/data-science-bowl-2018
https://competitions.codalab.org/competitions/17094
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
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Fig. 2: Qualitative comparison between U-Net, wide U-Net, and UNet++, show-
ing segmentation results for polyp, liver, and cell nuclei datasets (2D-only for a
distinct visualization).

used Adam optimizer with a learning rate of 3e-4. Architecture details for U-
Net and wide U-Net are shown in Table 2. UNet++ is constructed from the
original U-Net architecture. All convolutional layers along a skip pathway (Xi,j)
use k kernels of size 3×3 (or 3×3×3 for 3D lung nodule segmentation) where
k = 32 × 2i. To enable deep supervision, a 1×1 convolutional layer followed by
a sigmoid activation function was appended to each of the target nodes: {x0,j |
j ∈ {1, 2, 3, 4}}. As a result, UNet++ generates four segmentation maps given an
input image, which will be further averaged to generate the final segmentation
map. More details can be founded at github.com/Nested-UNet.

Results: Table 3 compares U-Net, wide U-Net, and UNet++ in terms of the
number parameters and segmentation accuracy for the tasks of lung nodule
segmentation, colon polyp segmentation, liver segmentation, and cell nuclei seg-
mentation. As seen, wide U-Net consistently outperforms U-Net except for liver
segmentation where the two architectures perform comparably. This improve-
ment is attributed to the larger number of parameters in wide U-Net. UNet++
without deep supervision achieves a significant performance gain over both U-
Net and wide U-Net, yielding average improvement of 2.8 and 3.3 points in
IoU. UNet++ with deep supervision exhibits average improvement of 0.6 points
over UNet++ without deep supervision. Specifically, the use of deep supervi-
sion leads to marked improvement for liver and lung nodule segmentation, but
such improvement vanishes for cell nuclei and colon polyp segmentation. This
is because polyps and liver appear at varying scales in video frames and CT

https://github.com/MrGiovanni/Nested-UNet
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Table 3: Segmentation results (IoU: %) for U-Net, wide U-Net and our suggested
architecture UNet++ with and without deep supervision (DS).

Architecture Params
Dataset

cell nuclei colon polyp liver lung nodule

U-Net [9] 7.76M 90.77 30.08 76.62 71.47
Wide U-Net 9.13M 90.92 30.14 76.58 73.38

UNet++ w/o DS 9.04M 92.63 33.45 79.70 76.44
UNet++ w/ DS 9.04M 92.52 32.12 82.90 77.21

Fig. 3: Complexity, speed, and accuracy of UNet++ after pruning on (a) cell
nuclei, (b) colon polyp, (c) liver, and (d) lung nodule segmentation tasks respec-
tively. The inference time is the time taken to process 10k test images using one
NVIDIA TITAN X (Pascal) with 12 GB memory.

slices; and thus, a multi-scale approach using all segmentation branches (deep
supervision) is essential for accurate segmentation. Fig. 2 shows a qualitative
comparison between the results of U-Net, wide U-Net, and UNet++.

Model pruning: Fig. 3 shows segmentation performance of UNet++ after ap-
plying different levels of pruning. We use UNet++ Li to denote UNet++ pruned
at level i (see Fig. 1c for further details). As seen, UNet++ L3 achieves on av-
erage 32.2% reduction in inference time while degrading IoU by only 0.6 points.
More aggressive pruning further reduces the inference time but at the cost of
significant accuracy degradation.

5 Conclusion

To address the need for more accurate medical image segmentation, we pro-
posed UNet++. The suggested architecture takes advantage of re-designed skip
pathways and deep supervision. The re-designed skip pathways aim at reducing
the semantic gap between the feature maps of the encoder and decoder sub-
networks, resulting in a possibly simpler optimization problem for the optimizer
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to solve. Deep supervision also enables more accurate segmentation particularly
for lesions that appear at multiple scales such as polyps in colonoscopy videos.
We evaluated UNet++ using four medical imaging datasets covering lung nodule
segmentation, colon polyp segmentation, cell nuclei segmentation, and liver seg-
mentation. Our experiments demonstrated that UNet++ with deep supervision
achieved an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net,
respectively.
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Abstract. Computer-aided detection (CAD) can play a major role in diagnos-
ing pulmonary embolism (PE) at CT pulmonary angiography (CTPA). However,
despite their demonstrated utility, to achieve a clinically acceptable sensitivity,
existing PE CAD systems generate a high number of false positives, imposing ex-
tra burdens on radiologists to adjudicate these superfluous CAD findings. In this
study, we investigate the feasibility of convolutional neural networks (CNNs) as
an effective mechanism for eliminating false positives. A critical issue in success-
fully utilizing CNNs for detecting an object in 3D images is to develop a “right”
image representation for the object. Toward this end, we have developed a vessel-
aligned multi-planar image representation of emboli. Our image representation
offers three advantages: (1) efficiency and compactness—concisely summariz-
ing the 3D contextual information around an embolus in only 2 image channels,
(2) consistency—automatically aligning the embolus in the 2-channel images ac-
cording to the orientation of the affected vessel, and (3) expandability—naturally
supporting data augmentation for training CNNs. We have evaluated our CAD
approach using 121 CTPA datasets with a total of 326 emboli, achieving a sen-
sitivity of 83% at 2 false positives per volume. This performance is superior to
the best performing CAD system in the literature, which achieves a sensitivity of
71% at the same level of false positives. We have further evaluated our system
using the entire 20 CTPA test datasets from the PE challenge. Our system out-
performs the winning system from the challenge at 0mm localization error but is
outperformed by it at 2mm and 5mm localization errors. In our view, the perfor-
mance at 0mm localization error is more important than those at 2mm and 5mm
localization errors.

Keywords: Computer-aided detection, pulmonary embolism, convolutional neu-
ral networks, vessel-aligned image representation.

1 Introduction

Pulmonary embolism (PE) is a thrombus, occasionally colloquially referred to as a
blood clot, that travels from the legs, or rarely other parts of the body, to the lungs
where it obstructs central, lobar, segmental, or subsegmental pulmonary arteries de-
pending on the size of the embolus. The untreated mortality rate of PE may approach
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30%. However, with early diagnosis and treatment, the mortality rate decreases to as
low as 2% to 11%. CT pulmonary angiography (CTPA) is the primary means for the
evaluation of suspected PE. At CTPA, an embolus appears as a dark region surrounded
by the brighter, contrast-enhanced vessel lumen. CTPA dataset interpretation demands
a radiologist to carefully trace each branch of the pulmonary artery for any suspected
PEs. Therefore, PE diagnosis often requires extensive reading time, and the accuracy
of CTPA interpretation depends on the radiologists’ experience, attention span, eye fa-
tigue, and their sensitivity to visual characteristics of PEs.

Computer-aided detection (CAD) can play a major role in detecting and diagnos-
ing PEs. Recent clinical studies have shown that CAD systems can help radiologists
increase their sensitivity for PE detection [3]. However, despite their demonstrated util-
ity, existing CAD systems still require a relatively high false positive rate in order to
achieve a clinically acceptable PE sensitivity. The false positives generated by CAD
systems prolong the reading time of CTPA studies, because each CAD finding must
be examined by a radiologist and adjudicated. It is therefore highly desirable to de-
velop a CAD system that can achieve higher sensitivity while maintaining a clinically
acceptable false positive range (between 1 to 5 false positives per CTPA study).

This paper investigates the feasibility of convolutional neural networks (CNNs) as
an effective tool for eliminating false positive detections. We have found that the effec-
tive utilization of CNNs for detecting PEs and removing false detections in 3D CTPA
datasets is contingent on an effective image representation of PEs. As such, a key find-
ing from our work is a vessel-aligned multi-planar image representation of emboli that
offers three advantages: (1) our proposed image representation is efficient and compact
because it concisely summarizes the 3D contextual information around an embolus in
only 2 image channels; (2) our proposed image representation is consistent because it
automatically aligns the embolus in the 2-channel images according to the orientation
of the affected vessel; and (3) our proposed image representation is expandable be-
cause it naturally supports data augmentation for training a CNN. We have evaluated
our CAD system using 121 CTPA datasets containing a total of 326 emboli, achieving
a sensitivity of 83% at 2 false positives per volume. This performance is superior to the
best performing CAD system in the literature, which achieves a sensitivity of 71% at
the same level of false positives. We have further evaluated our system with the entire
20 CTPA test datasets from the PE challenge [1]. Our system outperforms MeVis’, the
best reported system, at 0mm localization error but is outperformed by MeVis’ at 2mm
and 5mm localization errors. In our view, the performance at 0mm localization error is
more important than those at 2mm and 5mm localization errors.

2 Related Work

CAD systems for PE typically consist of four stages: 1) extracting a volume of inter-
est (VOI) from the original dataset by performing lung segmentation [5,11,8] or vessel
segmentation [7,11,2]; 2) generating a set of PE candidates within the VOI using al-
gorithms such as tobogganing [5]; 3) extracting hand-crafted features from each PE
candidate (e.g., [6]), and 4) computing a confidence score for each of the candidates us-
ing a rule based classifier [7], neural networks and a nearest neighbor classifier [11,8],
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or a multi-instance classifier [5]. However, current CAD systems either produce many
false positives to achieve a high detection sensitivity [7], or yield acceptable false pos-
itive rates but with only limited sensitivity levels [8,2,11] (see Table 1 for a detailed
performance comparison). We hypothesize that inadequate modeling of PEs based on
hand-crafted features results in suboptimal CAD performance, and therefore investi-
gate the use of a new image representation for PEs, coupled with CNNs, to improve
state-of-the-art performance.

3 Proposed Method

Given a CTPA dataset, our method first segments lungs and then generates a set of PE
candidates within the lung area using the tobogganing algorithm [5]. Our method then
uses our vessel-aligned multi-planar image representation to produce a 2-channel image
representation for each PE candidate. The resulting 2-channel patches are then fed to a
CNN to classify the underlying candidates into PE or non-PE categories. Please refer
to [5] for the tobogganing algorithm and to [4] for the CNN. In the following, we shall
focus on our suggested vessel-aligned multi-planar image representation.

3.1 Vessel-Aligned Multi-planar Image Representation

The success of CNNs for object detection in 3D volumetric datasets such as CT im-
ages heavily relies on the representation of the object of interest [9,10]. We have ex-
perimentally found that a suitable 3D image representation for CNNs must meet three
requirements: (1) compactness and efficiency, (2) consistency across instances, and (3)
expandability for data augmentation. With these requirements in mind, we propose an
image representation, called vessel-aligned multi-planar image representation, for PE,
which has these three critical properties. In the following, we first describe our unique
image representation and then explain how it meets the above requirements.

To obtain our image representation, we first estimate the orientation of the vessel
that contains the candidate. For this purpose, a 15x15x15mm neighborhood is extracted
around the PE candidate. In the resulting subvolume, the PE appears as a filling defect,
because PEs are relatively darker than the contrast-enhanced vessel. To minimize the
influence of the filling defect on vessel orientation estimation, the vessel-like intensity
value of 100 HU (Hounsfield units) is assigned to the PE voxels within the subvolume.
Note that the tobogganing algorithm [4] has already labeled the PE voxels associated
with each candidate. Next, a principle component analysis is performed in the connected
component (≥ 100 HU) that contains the PE. If v1, v2, v3 denote the eigen vectors of
the analyzed component (λ1 ≥ λ2 ≥ λ3), then interpolating the volume along {v1, v2}
or {v1, v3} results in the longitudinal view of the PE (the first channel of our image rep-
resentation) and interpolating the volume along {v2, v3} results in the cross-sectional
view of the PE (the second channel of our image representation).

Our image representation is compact because it concisely summarizes the 3D contex-
tual information around PEs in only 2 image channels. While it is theoretically possible
to train a CNN using subvolumes with an arbitrary number of slices, the performance
of such networks have been reported to be inferior to the CNNs that have been trained
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Fig. 1. The suggested 2-channel image representation characterizes emboli more consistently than
the original axial, sagittal, and coronal views. As seen, in nearly all cases, the suggested scheme
consistently captures PEs within the containing vessel as elongated and circular structures in the
first and second channels, respectively. The three standard views do not provide this property
given the varying orientation of the containing vessels. A consistent image appearance is the key
to training an accurate image classifier.

using samples with a fewer number of slices [9]. In fact, the information embedded in
the additional image slices has been shown to degrade classification performance [9].
This phenomenon is attributed to the curse of dimensionality, where a large number
of image channels corresponds to learning a far larger number of network parameters,
which in turn leads to over-fitting to the training samples and thus poor generalization
performance. It is therefore desirable to efficiently represent the 3D context around the
object of interest using a low dimensional image representation.

Our image representation consistently describes PEs and the containing vessels. In
general, emboli can can affect pulmonary arteries in any orientation. As a result, im-
ages extracted from the axial, sagittal, coronal planes exhibit a significant variation in
the appearance of emboli. This in turn complicates the classification task and hinders
effective utilization of CNNs. With the benefit of vessel alignment, our image represen-
tation allows for a consistent image representation whereby emboli consistently appear
as elongated structures in the longitudinal vessel view and as circular structures in the
cross-sectional vessel view. Fig. 1 illustrates variations in PE appearances using the sug-
gested vessel-aligned image representation and a standard image representation based
on sagittal, coronal and axial views.

Our image representation amenably supports data augmentation, which is essential
for effective training and testing of CNNs. In 2D applications, data augmentation is per-
formed by applying arbitrary in-plane rotations and then collecting samples at multiple
scales and translations. A 3D representation must also support the above operations to
enable data augmentation. While it is straightforward to extend translation and scale
to a 3D space, the rotation operation can be problematic. Our image representation is
based on longitudinal and cross-sectionals planes; however, rotating such planes along
a random axis will result in the arbitrary appearance of the same PE in the resulting
2-channel images (Fig. 2(a)). The major challenge is how to perform 3D rotation such
that the PE representation remains consistent. Our image representation accommodates
this need by rotating the planes around the vessel axis v1. By doing so, we obtain two
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Fig. 2. (a) Data augmentation using random rotation axes, as suggested in [10], results in incon-
sistent PE appearance. (b) The suggested image representation uses two envelopes of planes to
achieve consistency for data augmentation. (c) Consistent PE appearance after data augmentation
using the suggested envelopes of planes. The green double arrows and red ellipses represent the
shapes of PEs and the containing vessels.

envelopes of image planes (see Fig. 2(b)) where the first envelope contains the planes
that all intersect at the vessel axis and the second envelope contains the image planes
whose normals are the vessel axis. By selecting any pairs of planes from the two en-
velopes, one can generate a new PE instance while retaining the consistency. Fig. 2(c)
illustrates consistency in appearance of PEs after data augmentation using the suggested
envelopes of planes.

3.2 Convolutional Neural Networks (CNNs)

CNNs are deep learning machines that can potentially eliminate the need for designing
hand-crafted features—they learn the features and train the classifier simultaneously.
CNNs are so-named for their convolutional layers that learn discriminative patterns
of the training samples at multiple scales. In this work, we employ the GPU-based
open-source implementation of CNNs [4] and use the layout shown in Fig. 3. We have
experimented with more sophisticated network architectures but observed no significant
performance gain.

4 Experiments

We have evaluated our CAD system using 2 databases: (1) our private database consist-
ing of 121 CTPA datasets with a total of 326 emboli, and (2) the test datasets from the
PE challenge [1] consisting of 20 CTPA datasets with a total of 133 emboli.

Evaluations Using Our Database. The candidate generation module of our CAD sys-
tem produces a total of 8585 PE candidates in the 121 CTPA datasets, of which 7722
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Fig. 3. The layout of the CNN used in our experiments.

are false positives and 863 are true positives. It is possible for a CAD system to produce
multiple detections for a single large PE and that explains why the number of our true
detections is greater than the number of PEs in the database. According to the avail-
able ground truth, the candidate generation module achieves a sensitivity of 93% for PE
detection while producing, on average, 65.8 false positives per patient.

Our goal is to use CNNs to minimize the number of false positives while maintain-
ing a high sensitivity for PE detection. To train CNNs, we randomly split the collected
detections at the patient level into 3 groups, enabling a 3-fold cross validation of our
CAD system. We then used the false positive detections as negative candidates and
the true detections as positive candidates. Given the limited number of candidates, we
formed the training set by performing data augmentation. For this purpose, we collected
N = Nr ×Nt ×Ns samples from each candidate location based on our vessel-aligned
multi-planar PE representation, where Nr is the number of rotations, Nt is the number
of translations, and Ns is the number of image scaling. To produce rotated patches, we
rotated the longitudinal and cross-sectional vessel planes around the vessel axis Nr = 5
times. For scaling, we extracted patches at Ns = 3 different scales, resulting in 10mm,
15mm, and 20mm wide patches. In each scale, we have performed image interpola-
tion so that the resulting patches are all 32x32 pixels. For translation, we shifted the
candidate location along the vessel direction Nt = 3 times, up to 20% of the physical
width of the patches. With data augmentation, we can increase the size of the training
set by a factor of N = 45, which is sufficiently large to train CNNs. Given a test CTPA
dataset, we first obtain a set of candidates, and then apply the trained CNN on N 2-
channel image patches extracted from each candidate location. The confidence values
for the underlying candidate is then computed as the average of the resulting N confi-
dence values. Once all the test candidates are processed, we obtain an FROC curve by
changing a threshold on the corresponding confidence values.

Fig. 4 shows the FROC curve of the suggested system. For comparison, we have com-
puted the FROC curve of [5] using the prediction results provided by the corresponding
author. We have chosen [5] for performance comparison because their suggested system
has achieved the best performance reported in the literature on a reasonably large CTPA
database (see Table 1). For further comparison, we have replaced our suggested image
presentation with a 2.5D image representation as suggested in [10]. For fair comparisons,
we have kept all the other stages the same. As seen in Fig. 4, our system outperforms [5],
which is a CAD system based on a carefully designed set of hand-crafted features [6]
and a multi-instance classifier. In addition, we observed that the CNN trained using a
2.5D image representation results in a performance which is not only inferior to our sug-
gested image representation but also to the hand-crafted approach, demonstrating the
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Fig. 4. Our CAD system using the suggested
image representation outperforms the best
hand-crafted approach [5] and also a CNN
powered by a 2.5D approach [10].

Method Sensitivity FPs/vol #datasets #PEs

Liang et al. [5] 70.0% 2.0 132 716
Bouma et al. [2] 58% 4.0 19 116

Park et al. [8] 63.2 18.4 20 44
Ozkan et al. [7] 61% 8.2 33 450
Wang et al. [11] 62% 17.1 12 24

This work 83.4% 2.0 121 326
This work (2.5D) 60.4% 2.0 121 326

Liang et al. [5] 71.7% 2.0 121 326

Table 1. (top) Performance of the existing
PE CAD systems obtained through differ-
ent datasets. (bottom) Performance comparison
based on our database of 121 CTPA datasets.
Operating points are taken from Fig. 4.

significant contribution of our effective image representation in achieving the improved
performance. Table 1 contrasts the performance of our proposed CAD system with that
of the other CAD systems suggested in the literature.

Evaluations Using PE Challenge Database. We have further trained a CNN, powered
by our unique image representation, using all 121 CTPA datasets from our database
and then evaluated our CAD system using the test database from the PE challenge [1].
Since the ground-truth was not available on the website, our detection results were
evaluated by the organizers. At 0mm localization error, our CAD system achieves a
sensitivity of 34.6% at 2 FPs/vol, which outperforms the winning team (a commercial
CAD system designed MeVis Medical Solutions) with a sensitivity of 28.4% at the same
false positive rate. Our CAD system is, however, outperformed by MeVis’ at 2mm and
5mm localization errors. For more detailed comparisons, please refer to [1]. Despite
the demonstrated superiority at 0mm localization error, our CAD system exhibits a
notable performance degradation compared to the results obtained using our database.
We attribute this to faulty lung segmentation, which results in many PE candidates in the
colon and diaphragm. Since such false positives had not been observed in our training
sets, the trained CNN did not perform optimally in removing such false positives.

5 Conclusions and Discussions

In this work, we investigated the possibility of a unique PE representation, coupled
with CNNs, to produce a more accurate PE CAD system. Our system contrasts with
existing systems, wherein a traditional hand-crafted feature design is used for charac-
terizing PEs. We evaluated our system in comparison with the most robust hand-crafted
approach [5] and a learning-based approach using CNNs powered by a 2.5D PE rep-
resentation, demonstrating a marked performance improvement. Our method was also
tested using the test database from the PE challenge where it outperformed the academic
systems at the three localization errors and also outperformed a commercial CAD sys-
tem at 0mm localization error. Moving forward, we intend to improve the accuracy
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of our CAD system using additional training cases to address the issue of faulty lung
segmentation resulting from non-pulmonary candidates.
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Automating Carotid Intima-Media Thickness Video Interpretation with
Convolutional Neural Networks∗
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Abstract

Cardiovascular disease (CVD) is the leading cause of
mortality yet largely preventable, but the key to prevention
is to identify at-risk individuals before adverse events. For
predicting individual CVD risk, carotid intima-media thick-
ness (CIMT), a noninvasive ultrasound method, has proven
to be valuable, offering several advantages over CT coro-
nary artery calcium score. However, each CIMT exami-
nation includes several ultrasound videos, and interpreting
each of these CIMT videos involves three operations: (1)
select three end-diastolic ultrasound frames (EUF) in the
video, (2) localize a region of interest (ROI) in each selected
frame, and (3) trace the lumen-intima interface and the
media-adventitia interface in each ROI to measure CIMT.
These operations are tedious, laborious, and time consum-
ing, a serious limitation that hinders the widespread utiliza-
tion of CIMT in clinical practice. To overcome this limita-
tion, this paper presents a new system to automate CIMT
video interpretation. Our extensive experiments demon-
strate that the suggested system significantly outperforms
the state-of-the-art methods. The superior performance is
attributable to our unified framework based on convolu-
tional neural networks (CNNs) coupled with our informa-
tive image representation and effective post-processing of
the CNN outputs, which are uniquely designed for each of
the above three operations.
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Figure 1: Longitudinal view of the carotid artery in an ul-
trasound B-scan image. CIMT is defined as the distance be-
tween the lumen-intima interface and the media-adventitia
interface, measured approximately 1 cm distal from the
carotid bulb on the far wall of the common carotid artery at
the end of the diastole; therefore, interpreting a CIMT video
involves three operations: (1) select three end-diastolic ul-
trasound frames (EUFs) in each video (the cardiac cycle in-
dicator, a black line, shows to where in the cardiac cycle the
current frame corresponds); (2) localize a region of inter-
est (ROI) approximately 1 cm distal from the carotid bulb
in the selected EUF; (3) measure the CIMT within the lo-
calized ROI. This paper aims to automate these three opera-
tions simultaneously through a unified framework based on
convolutional neural networks.

1. Introduction

Given the clinical significance of carotid intima-media
thickness (CIMT) as an early and reliable indicator of car-
diovascular risk, several methods have been developed for
CIMT image interpretation. The CIMT is defined as the
distance between the lumen-intima and media-adventitia
interfaces at the far wall of the carotid artery (Figure 1).
Therefore, to measure CIMT, the lumen-intima and the
media-adventitia interfaces must be identified. As a re-
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sult, the earlier approaches are focused on analyzing the
intensity profile and distribution, computing the gradient
[24, 27, 5], or combining various edge properties through
dynamic programming [13, 3, 25]. Recent approaches
[16, 4, 23, 28, 7, 2] are mostly based on active contours (aka,
snakes) or their variations [9]. Some of these approaches re-
quire user interaction, while other approaches aim for com-
plete automation through integrating with various image
processing algorithms, such as Hough transform [21] and
dynamic programming [25]. Most recently, Menchn-Lara
et al. employed a committee of standard multilayer percep-
trons in [18] and a single standard multilayer perceptron
with an auto-encoder in [19] for CIMT image interpreta-
tion, but both methods did not outperform the snake-based
methods from the same research group [2, 1]. For a more
complete survey of methods for automatic CIMT measure-
ments, please refer to the review studies conducted by Moli-
nari et al.[22] and Loizou et al. [15].

However, nearly all the aforementioned methods are fo-
cused on only the third operation: CIMT measurement, ig-
noring the two preceding operations, i.e., frame selection
and ROI localization. To our knowledge, the only system
that simultaneously automates the three operations is the
work [26], an extension of [29], which automatically se-
lects the EUF frame, localizes the ROI in each selected EUF
frame, and provides the CIMT measurement in the selected
ROI. However, as with other works, this method is based on
hand-crafted algorithms, which often lack the desired ro-
bustness for routine clinical use, a weakness that we aim to
overcome in this paper.

A key contribution of this paper is a new system that ac-
celerates CIMT video interpretation by automating all the
three operations in a novel unified framework based on con-
volutional neural networks (CNNs). We will show that with
proper pre-processing and post-processing, our proposed
CNN-based approach can significantly outperform the ex-
isting methods in all aspects of CIMT image interpreta-
tion including frame selection, ROI localization, and CIMT
measurements, making the following specific contributions:

• A unified framework based on CNNs that automates
the entire CIMT interpretation process. This is in con-
trast to the prior works where only the very last step of
the CIMT interpretation process was automated. The
performance of the suggested system significantly out-
performs the hand-crafted approach [26], which, to our
knowledge, is the only system in the literature that
aimed to automate all the above three tasks.
• A novel frame selection method based on the ECG sig-

nals at the bottom of ultrasound frames. The suggested
method utilizes effective pre-processing of patches and
post processing of CNN outputs, enabling a significant
increase in the performance of a baseline CNN.
• A new method that localizes the ROI for CIMT in-

terpretation. The suggested method combines the
discriminative power of a CNN with a contextual
constrain to accurately localize the ROIs in the se-
lected frames. We demonstrate that the suggested
contextually-constrained CNN outperforms the perfor-
mance of a baseline CNN.
• A framework that combines CNNs with active contour

models for accurate boundary segmentation. Specifi-
cally, given a localized ROI, the CNN initializes two
open snakes, which further deform to acquire the
shapes of intima-media boundaries. We show that the
segmentation accuracy of the suggested method is far
higher than the state-of-the-art methods.
• Extensive evaluation of each stage of the suggested

CIMT interpretation system. Specifically, we perform
leave-one-patient-out cross-validation1 using only the
training CIMT videos to tune the parameters of the
suggested system, and then thoroughly evaluate the
performance of our system using a large number of in-
dependent test CIMT videos.

2. CIMT Protocol
The CIMT exams utilized in this paper were performed

with B-Mode ultrasound using an 8-14MHz linear array
transducer utilizing fundamental frequency only (Acuson
SequoiaTM, Mountain View, CA, USA) [6]. The carotid
screening protocol begins with scanning bilateral carotid ar-
teries in a transverse manner from the proximal aspect to the
proximal internal and external carotid arteries. The probe
is then turned to obtain the longitudinal view of the distal
common carotid artery. The sonographer optimizes the 2D
images of the lumen-intima and media-adventitia interfaces
at the level of the common carotid artery by adjusting over-
all gain, time gain, compensation and focus position. Once
the parameters are optimized, the sonographer captures two
CIMT videos focused on the common carotid artery from
two optimal angles of incidence. The same procedure is re-
peated for the other side of neck, resulting in a total of 4
CIMT videos for each subject.

3. Method
Our goal is to automate the three operations in CIMT

video interpretation, i.e, given a CIMT video, our method
will automatically identify three EUFs (Section 3.1), local-
ize an ROI in each EUF (Section 3.2), and segment the
lumen-intima and media-adventitia interfaces within each
ROI (Section 3.3).

3.1. Frame Selection
We select the EUFs based on the ECG signal embedded

at the bottom part of a CIMT video. The cardiac cycle indi-
1We leave all the videos from one patient out for validation.
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Figure 2: An accumulated difference image is generated by adding up three neighboring difference images.

cator is represented by a moving black line in each frame.
Since the ECG signal is overlaid on the ultrasound image,
there is quite bit of noise around the indicator. The chal-
lenge is to reconstruct the original ECG signal from noisy
frames and to detect the R peaks from the ECG signal, as
the R-peaks correspond to the EUFs. To do so, we intro-
duce accumulated difference images that carry sufficient in-
formation for CNN to learn and distinguish R-peaks from
non-R-peaks.
Training Phase: Let It denote an image subregion selected
from the lower part of an ultrasound frame so that it contains
the ECG signal. We first construct a set of difference images
dt by subtracting every consecutive pairs of images, dt =
|It−It+1|, and then form accumulated difference images by
adding up every three neighboring difference images, Dt =∑2

i=0 d
t−i. Accumulated difference image Dt can capture

the cardiac cycle indicator at frame t. Figure 2 illustrates
how an accumulated difference image is generated.

Next, we determine the location of the restored wavelet
in each accumulated difference image. For this purpose, we
find the weighted centroid c = [cx, cy] of each accumulated
difference image Dt as follows:

c =
1

Zt

∑
p∈Dt

Dt(px, py)× p

where p = [px, py] is a pixel in the accumulated difference
image and Zt =

∑
p∈Dt Dt(px, py) is a normalization fac-

tor that ensures the weighted centroid stays within the image
boundary. Once centroids are identified, we extract patches
of size 32 × 32 around the centroid locations. Specifically,
we extract patches with up to 2 pixel translations from each
centroid. However, we do not scale the patches in data aug-
mentation, because doing so would inject label noise in the
training set. For instance, a small restored wavelet may take
the appearance of an R-peak after expanding or an R-peak

Figure 3: The test stage of our automatic frame selection
scheme.

wavelet may look like a non-R-peak wavelet after shrinking.
Nor do we perform rotation-based patch augmentation, be-
cause we do not expect the restored wavelets to appear with
rotation in the test image patches. Once collected, patches
are binarized using Otsu’s method. In Section 4, we discuss
the choice of binarization method through an extensive set
of experiments. Each binary patch is then labeled as posi-
tive if it corresponds to an EUF (i.e., an R-peak); otherwise
negative. Basically, given a patch, we first determine the
accumulated difference image from which the patch is ex-
tracted. We then trace back to the underlying difference im-
ages and check whether they are related to the EUF or not.
Once the patches are labeled, we form a stratified set with
96,000 patches to train a 2-way CNN for frame selection.

Testing Phase: Figure 3 shows our frame selection system
given a test video. We first compute an accumulated differ-
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ence image for each frame in the video. We then extract im-
age patches from the weighted centroids of the accumulated
difference images. The probability of each frame being the
EUF is measured as the average probabilities assigned by
the CNN to the corresponding patches. By concatenating
the resulting probabilities for all the frames in the video,
we obtain a probability signal whose local maxima indicate
the locations of the EUFs. However, the generated proba-
bility signals often exhibit abrupt changes, which can cause
too many local maxima along the signal. We therefore first
smooth the probability signal using a Gaussian function,
and then find the EUFs by locating the local maxima of
the smoothed signals. In Figure 3, for illustration purposes,
we have also shown the reconstructed ECG signal, which is
computed as the average of the accumulated difference im-
ages, 1

N

∑N
t=1D

t withN being the number of frames in the
video. As seen, the probability of being the EUF reaches its
maximum around the R peaks of the QRS complexes (as de-
sired) and then smoothly decays as it distances from the R
peaks. By mapping the locations of the local maxima to the
frame numbers, we can identify the EUFs in the test video.

3.2. ROI Localization

Accurate localization of the ROI is challenging, because,
as seen in Figure 1, there are no significant differences that
can be observed in image appearance among the ROIs on
the far wall of the carotid artery. To overcome this chal-
lenge, we utilize the location of the carotid bulb as a contex-
tual constraint. We choose this constraint for two reasons:
1) the carotid bulb appears as a distinct dark area in the ul-
trasound frame and thus can be uniquely identified; 2) ac-
cording to the consensus statement of American society of
Electrocardiography for cardiovascular risk assessment, the
ROI should be placed approximately 1 cm from the carotid
bulb on the far wall of the common carotid artery. While
the former motivates the use of the carotid bulb location as
a constraint from a technical point of view, the latter justi-
fies this constraint from a clinical standpoint.

Training Phase: We incorporate this constraint in the sug-
gested system by training a 3-way CNN that simultaneously
localizes both ROI and carotid bulb, and then refines the es-
timated location of the ROI given the location of the carotid
bulb. Figure 9 in the supplementary material illustrates
how the image patches are extracted from a training frame.
We perform data augmentation by extracting the training
patches within a circle around the locations of the carotid
bulbs and the ROIs. The negative patches are extracted from
a grid of points sufficiently far from the locations of the
carotid bulbs and the ROIs. Note that the above translation-
based data augmentation is sufficient for this application,
because our database provides a relatively large number of
training EUFs, from which a large set of training patches
can be collected. Once the patches are collected, we form

a stratified training set with approximately 410,000 patches
to train a 3-way CNN for constrained ROI localization.
Testing Phase: Referring to Figure 4, during the test stage,
the trained CNN is applied to all the pixels in the EUF,
generating two confidence maps with the same size as the
EUF. The first confidence map shows the probability of a
pixel being the carotid bulb and the second confidence map
shows the probability of a pixel being the ROI. One way
to localize the ROI is to find the center of the largest con-
nected component within the ROI confidence map without
considering the detected location of the carotid bulb. How-
ever, this naive approach may fail to accurately localize the
ROI. For instance, a long-tale connected component along
the far wall of the carotid artery may cause substantial ROI
localization error. To compound the problem, the largest
connected component of the ROI confidence map may ap-
pear far from the actual location of the ROI, resulting in a
complete detection failure. To overcome these limitations,
we constraint the ROI location lroi by the location of the
carotid bulb lcb. For this purpose, we first determine the
location of the carotid bulb as the centroid of the largest
connected component within the first confidence map, and
then localize the ROI using the following formula

lroi =

∑
p∈C∗M(p) · p · I(p)∑
p∈C∗M(p) · I(p)

(1)

where lroi denotes the ROI location, lcb denotes the center
of the carotid bulb, M denotes the confidence map of being
the ROI, C∗ is the largest connected component in M that
is the nearest to the carotid bulb, and I(p) is an indicator
function for pixel p = [px, py] that is defined as

I(p) =

{
1, if ‖p− lcb‖ < 1 cm
0, otherwise

(2)
(3)

The indicator function I(p) is binary function that simply
includes pixel when the value is 1 as in Eq. 2, otherwise
excludes pixel when the value is 0 as in Eq. 3.

3.3. Intima-Media Thickness Measurement
Measuring intima-media thickness require a continu-

ous and one-pixel precise boundary for lumen-intima and
media-adventitia. Lumen-intima is relatively easier to de-
tect because of strong gradient change at the border, how-
ever, detecting media-adventitia interface is quite challeng-
ing due to its subtle image gradients and noise around its
border. We approach this problem as a 3-way classification
task: 1) lumen-intima interface, 2) media-adventitia inter-
face, and 3) background.
Training Phase: To train 3-way CNN, we collected sparse
background patches and then pixel-by-pixel image patches
around lumen-intima interface and media-adventitia inter-
face with additional patches ±3 pixels from the ground
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Figure 4: The test stage of our ROI localization method. In the unconstrained scenario, we only use the ROI confidence map,
which results in relatively large localization error. In the constrained mode, given the estimated location of the carotid bulb,
we localize the ROI more accurately.

truth. Using ±3 pixels for additional patches around
intima-media boundary was necessary to balance number
of patches with background patches and produced better re-
sults. Figure 10 in the supplementary material illustrates
how the training patches are collected from an ROI.

Testing Phase: Figure 5 illustrates the testing process. The
3-way trained CNN is applied in a sliding-window fashion
for a given test ROI and generates two confidence maps
(Figure 5(b)) with the same size as the ROI. Since confi-
dence map is thicker than a pixel, we choose the maximum
response column-by-column and generate a new binary im-
age as shown in Figure 5(c). Finally, we use two active
contour models (a.k.a, snakes) [12] for segmenting lumen-
intima and media-adventitia interfaces. Figure 5(d) shows
two final converged snakes and we take measurements as
the average vertical distance between the two snakes.

4. Experiments
We use a database of 92 CIMT videos captured from 23

subjects with 2 CIMT videos from the left and 2 CIMT
videos from the right carotid artery of each subject. The
ground truth for each video contains the EUF number, the
locations of ROI, and the segmentation of lumen-intima and
media-advantitia interfaces. For consistency, we use the
same training set and the same test set (no overlap with
training) for all three tasks. Our training set contains 48
CIMT videos of 12 subjects with a total of 4,456 frames and
our test set contains 44 CIMT videos of 11 subjects with a
total of 3,565 frames. For each task, we perform leave-one-
patient-out cross-validation based on the training subjects
to tune the parameters, and then evaluate the performance
of the tuned system using the test subjects.

Architecture: As shown in Table 1, we employ a CNN ar-
chitecture with 2 convolutional layers, 2 subsampling lay-
ers, and 2 fully connected layers (see Section 5 for our
justifications). We also append a softmax layer to the last

fully connected layer so as to generate probabilistic confi-
dence values for each class. Our CNN architecture has input
patches of size 32x32, and we resize the collected patches
to 32x32 prior to the training process. For the CNNs used in
our experiments, we employ a learning rate of α = 0.001,
a momentum of µ = 0.9, and a constant scheduling rate of
γ = 0.95.

Pre- and post-processing for frame selection: We have
experimentally found out that binarized image patches im-
prove the quality of convergence and accuracy of frame se-
lection. Furthermore, we have observed that the standard
deviation of the Gaussian function used for smoothing the
probability signals, can also substantially influence frame
selection accuracy. Therefore, we have conducted leave-
one-patient-out cross-validation based on the training sub-
jects to find the best binarization method and the optimal
standard deviation of the Gaussian function. For binariza-
tion, we have considered a fixed set of thresholds and adap-
tive thresholding using Otsu’s method. For smoothing, we
have considered a Gaussian function with different standard
deviation (σg) as well as the scenario where no smoothing
is applied. For each configuration of parameters, we have
done a free-response ROC (FROC) analysis. We consider a
selected frame a true positive, if it is found within one frame
from the expert-annotated EUF; otherwise, a false positive.

Our leave-one-patient-out cross-validation study, sum-
marized in Figure 11 in the supplementary material, indi-
cates that the use of a Gaussian function with σg = 1.5 for
smoothing the probability signals and adaptive threshold-
ing using Otsu’s method achieve the highest performance.
Figure 6 shows the FROC curve of our system for the test
subjects using the above parameters. For comparison, we
have also shown the operating point of the hand-crafted ap-
proach [26], which is significantly outperformed by the sug-
gested system.

Constrained ROI Localization: We conduct a leave-one-
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Figure 5: The test stage of lumen-intima and media-adventitia interface detection. (a) a test ROI. (b) The trained CNN
generates a confidence map where the green and red colors indicate the likelihood of lumen-intima interface and media-
adventitia interface, respectively. (c) The thick probability band around each interface is thinned by selecting the largest
probability for each interface in each column. (d) The step-like boundaries are refined through two open snakes.

Table 1: The CNN architecture used in our experiments. Note that C is the number of classes, which is 2 for frame selection
and 3 for both ROI localization and intima-media thickness measurements.

layer type input kernel stride pad output
0 input 32x32 N/A N/A N/A 32x32
1 convolution 32x32 5x5 1 0 64x28x28
2 max pooling 64x28x28 3x3 2 0 64x14x14
1 convolution 64x14x14 5x5 1 0 64x10x10
2 max pooling 64x10x10 3x3 2 0 64x5x5
2 fully connected 64x5x5 5x5 1 0 250x1
2 fully connected 250x1 1x1 1 0 Cx1

Figure 6: FROC curve of our frame selection system for the
test subjects using the tuned parameters. For comparison,
we have also shown the operating point of the prior hand-
crafted approach [26], which is significantly outperformed
by the suggested system.

patient-out cross-validation study based on the training sub-
jects to find the optimal size of the training patches. Our
cross-validation analysis, summarized in Figure 12 in the
supplementary material, indicates that the use of 1.8 × 1.8
cm patches achieves the most stable performance, yielding
low ROI localization error with only a few outliers. Fig-

ure 7 shows the ROI localization error of our system for
the test subjects using the optimal size of training patches.
To demonstrate the effectiveness of our constrained ROI lo-
calization method, we have also included the performance
of the unconstrained counterpart. In the constrained mode,
we use Eq. 1 for ROI localization whereas in the uncon-
strained mode we localize the ROI as the center of the
largest connected component in the corresponding confi-
dence map without considering the location of the carotid
bulb. Our method achieves an average localization error of
0.19 mm and 0.35 mm in the constrained and unconstrained
modes, respectively. The decrease in localization error is
statistically significant (p < 0.01). Also as seen in Fig-
ure 7, our method in the unconstrained mode has resulted in
3 complete localization failures (outliers), which have been
corrected in the constrained mode. Furthermore, compared
with the hand-crafted approach [26], our system in the con-
strained mode shows a decrease of 0.1 mm in ROI localiza-
tion error, which is statistically significant (p < .00001).

Intima-Media Thickness Measurement: We determined
the optimal image patch size by leave-one-patient-out cross-
validation using various image patch sizes and found that
360×360 µm achieved slightly lower localization error and
fewer outliers (see Figs. 12-13 in the supplementary ma-
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Figure 7: ROI localization error for the test subjects.
Our method in the constrained mode outperforms both the
unconstrained counterpart and the prior hand-crafted ap-
proach [26].

Figure 8: Localization error of the lumen-intima and media-
adventitia interfaces for the suggested system and the prior
hand-crafted approach [26]. The results are obtained for the
test subjects.

terial). Figure 8 shows the interface localization error of
our system on the test subjects, where we break down the
overall localization error for lumen-intima and that of the
media-adventitia interface as well as the hand-crafted ap-
proach [26] for each interface. We further analyzed agree-
ment between our system and the expert with the Bland-
Altman plot (see Figure 14 in the supplementary material).

5. Discussions
In Section 4, we investigated how the choice of patch

binarization and degree of Gaussian smoothing affect the
accuracy of frame selection. Here, we would like to dis-
cuss our findings and provide insights about our choices.
We choose to binarize the patches, because it reduces ap-
pearance variability and suppress the low-magnitude noise
content in the patches. Without patch binariztion, one can
expect a large amount of variability in the appearance of
wavelets can deteriorate the performance of the subsequent
CNN (see Figure 11 in the supplementary material). The
choice of binarization threshold is another important factor.
The use of a high threshold results in the partial appearance
of the wavelets in the resulting binary patches, reducing the
discriminatory appearance features of the patches. A low
threshold, on the other hand, can intensify noise content in
the images, which decreases the quality of training samples
and consequently a drop in classification performance. Ac-
cording to our analyses, it is difficult to find a fixed thresh-
old that can both suppress the noise content and keep the
shapes of the restored wavelets intact in all the collected
patches. Otsu’s method seems to overcome this limitation
by adaptively selecting a binarization threshold according
to the intensity distribution of each individual patch. For
patches with intensity values between 0 and 1, the adaptive
thresholds have a mean of 0.15 and standard deviation of
0.05. The wide range of adaptive thresholds explains why a
constant threshold may not perform as desirably.

Gaussian smoothing of the probability signals is also
essential for accurate frame selection. This is because
the probability signals prior to smoothing exhibit high fre-
quency fluctuations, which may complicate the localization
of the local maxima in the signals. The first cause of such
high frequency changes is patch misplacement in the ac-
cumulated difference images. Recall that we extract the
patches around the weighted centroids of the accumulated
difference images. However, a large amount of noise con-
tent in the difference images may cause the weighted cen-
troid to deviate from the center of the restored wavelet. In
this case, the extracted patch may partially or completely
miss the restored wavelet. This can manifest itself as a sud-
den change in the CNN output and as a result in the cor-
responding probability signal. The second cause of high
frequency changes is the inherited high variance of CNNs.
Use of ensemble of CNNs and data augmentation can allevi-
ate this problem at a significant computation cost. Alterna-
tively, we choose to mitigate these undesirable fluctuations
using Gaussian smoothing for computational efficiency.

As described in Section 3.2, we constrain our ROI local-
ization method by the location of the carotid bulb. This is
because the bulb area appears as a relatively distinct dark
area in the ultrasound frame. The distinct appearance of the
carotid bulb is also confirmed by our experiments, where
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we obtain the average bulb localization error of 0.26 mm for
the test subjects with only one failure case, which is more
favorable than the average unconstrained ROI localization
error of 0.38 mm with 3 failure cases. Therefore, the local-
ization of the bulb area can be done more reliably than the
localization of the ROI, which motivates the use of the bulb
location as a guide for more accurate ROI localization. We
integrate this constraint into our localization system through
a post-processing mechanism (see Eq. 1). Alternatively, we
could train a regression CNN where each pixel in the im-
age directly votes for the location of the ROI. However,
this approach may be hindered by lack of stable anatomi-
cal structures in noisy ultrasound images. We will explore
a regression CNN for ROI localization as future work.

In Section 4, we showed a high level of agreement be-
tween our system and the expert for the assessment of
intima-media thickness. The suggested system achieves
a mean absolute error of 2.8 µm with a standard devia-
tion of 2.1 µm for intimia-media thickness measurements.
However, this level of measurement error cannot hurt
the interpretation of the vascular age, because there ex-
ists a minimum difference of 400 µm between the average
intima-media thickness of healthy and high-risk population
(600 µm for healthy and ≥ 1000 µm for high-risk popula-
tion) [8]. To further put the performance of our system into
perspective, in Table 2, we have compared the accuracy of
intima-media thickness measurements produced by our sys-
tem with those of the other automatic methods recently sug-
gested in the literature. As seen, our method yields a lower
level of mean absolute error and smaller standard deviation.

We used a LeNet-like CNN architecture in our study, but
it does not limit the suggested framework to this architec-
ture. In fact, we have experimented with deeper CNN ar-
chitectures such as AlexNet [10] in both training and fine-
tuning modes; however, we did not observe any significant
performance gain. This was probably because the higher
level semantic features detected by the deeper networks are
not very relevant to the tasks in our CIMT applications.
Meanwhile, the concomitant computational cost of deep ar-
chitectures may hinder the applicability of our system, be-
cause it lowers the speed—a key usability factor of our sys-
tem. We also do not envision that a shallower architec-
ture can offer the performance required for clinical prac-
tice. This is because a network shallower than the LeNet
has only one convolutional layer and thus limited to learn-
ing primitive edge like features. Detecting the carotid bulb
and the ROI, and segmenting intima-media boundaries are
relatively challenging tasks, requiring more than primitive
edge-like features. Similarly, for frame selection, classify-
ing the restored wavelets into R-peak and non-R-peak cat-
egories is similar to digit recognition, for which LeNet is
a common choice of architecture. Therefore, LeNet-like
CNN architecture seems to represent an optimal balance be-

Table 2: CIMT error for our system and the other state-of-
the-art methods.

Author Year Thickness error (µm)
Current work — 2.8 ± 2.1

Bastida-Jumillacite [1] 2015 13.8±31.9
Ilea [7] 2013 80 ± 40

Loizou [14] 2013 30 ± 30
Molinari [20] 2011 43 ± 93

tween efficiency and accuracy for CIMT video analysis.
We should note that throughout this paper, all perfor-

mance evaluations were performed without involving any
user interactions. However, our goal is not to exclude the
user (sonographer) from the loop rather to relieve him from
the three tedious, laborious, and time consuming operations
by automating them while still offering the user a highly,
user-friendly interface to bring his indispensable expertise
onto CIMT interpretation through refining the automatic re-
sults easily at the end of each of the automated operations.
For instance, our system is expected to automatically lo-
cate a EUF within one frame, which is clinically accept-
able, but in case the automatic selected EUF is not the exact
one as desired, the user can simply press an arrow key to
move one frame forward or backward. From our experi-
ence, the automatically localized ROI is acceptable even if
there is a small distance from the ground truth location, but
the user still can easily drag the ROI and move it around
as desired. Finally, in refining the automatically identified
lumen-intima and media-adventitia interfaces, the original
snake formulation comes with spring forces for user inter-
action [9], but given the small distance between the lumen-
intima and media-adventitia interfaces, we have found that
“movable” hard constraints as proposed in [12] are far more
effective than the spring forces in measuring CIMT.

6. Conclusion
In this paper, we presented a unified framework to fully

automate and accelerate CIMT video interpretation. Specif-
ically, we suggested a computer-aided CIMT measurement
system with three components: (1) automatic frame selec-
tion in CIMT videos, (2) automatic ROI localization within
the selected frames, (3) automatic intima-media boundary
segmentation within the localized ROIs. We based each of
the above components on a CNN with a LeNet-like archi-
tecture and then boosted the performance of the employed
CNNs with effective pre- and post-processing techniques.
For frame selection, we demonstrated that how patch bina-
rization as a pre-processing step and smoothing the proba-
bility signals as a post-processing step improve the results
generated by the CNN. For ROI localization, we experimen-
tally proved that the location of the carotid bulb, as a con-
straint in a post-processing setting, significantly improves
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ROI localization accuracy. For intima-media boundary seg-
mentation, we employed open snakes as a post processing
step to further improve the segmentation accuracy. We com-
pared the results produced by the suggested system with
those of the major prior works, demonstrating more accu-
rate frame selection, ROI localization, and CIMT measure-
ments. This superior performance is attributed to the effec-
tive use of CNNs coupled with pre- and post- processing
steps, uniquely designed for the three CIMT tasks.
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López, and J. L. Sancho-Gómez. Automatic evaluation of
carotid intima-media thickness in ultrasounds using machine
learning. In Natural and Artificial Computation in Engi-
neering and Medical Applications, pages 241–249. Springer,
2013.

[19] R.-M. Menchón-Lara and J.-L. Sancho-Gómez. Fully auto-
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Supplementary material
Convolutional Neural Networks

As with multi-layer prceptrons, convolutional neural net-
works are trained using the back-propagation algorithm.
If D denotes a set of training images, W denotes a ma-
trix containing the weights of the convolutional layers, and
fW (D(i)) denotes the loss for the ith training image, the
loss over the entire training set is then computed as

L(W ) =
1

|D|

|D|∑
i

fW (X(i)) (4)

Gradient descent is commonly used for minimizing the
above loss function with respect to the unknown weights
W . However, the modern massively parallelized imple-
mentations of CNNs are limited by the amount of memory
on GPUs; therefore, one cannot evaluate the loss function
based on the entire training set D at once. Instead, the loss
function is approximated with the loss over the mini-batches
of training images of size N << |D|. A common choice
of the mini-batch size is 128, which is a reasonable trade-
off between loss noise suppression and memory manage-
ment. Given the size of mini-batches, one can approximate
the loss function as L(W ) ≈ 1

N

∑N
i=1 fW (X(i)), and itera-

tively update the weights of the network with the following
equations:

γt = γb
tN
|D|c

Vt+1 = µVt − γtα∆L(Wt)

Wt+1 = Wt + Vt+1 (5)

where α is the learning rate, µ is the momentum that indi-
cates the contribution of the previous weight update in the
current iteration, and γ is the scheduling rate that decreases
learning rate α at the end of each epoch.

Figures

Figure 9: For constrained ROI localization, we use a 3-way
CNN whose training image patches are extracted from a
grid of points on the background and around the ROI and
the carotid bulb locations.

Figure 10: For lumen-intima and media-adventitia interface
segmentation, we use a 3-way CNN whose training image
patches are extracted from the background and around the
lumen-intima and media-adventitia interfaces.
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Figure 11: FROC curves of our system for automatic frame selection. Each plot shows FROC curves for different binarization
thresholds and different levels of Gaussian smoothing. The results are obtained using leave-one-patient-out cross-validation
based on the training subjects. As seen, no smoothing or a small degree of Gaussian smoothing leads to relatively low frame
selection accuracy. This is because a trivial level of smoothing may not properly handle the fluctuations in the probability
signals, causing a large number of false positives around an EUF. On the other hand, a large degree of smoothing may
decrease the sensitivity of frame selection as the locations of the local maxima may be found more than one frame away from
the expert-annotated EUFs. We therefore use a Gaussian function with σg = 1.5 for smoothing the probability signals. Our
results also indicate that the adaptive thresholding method and a fixed threshold of 0.2 achieve the highest frame selection
accuracy. However, we choose to use adaptive thresholding because it decreases the parameters of our system by one and
that it performs more consistently at different levels of Gaussian smoothing.
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Figure 12: ROI localization error of our system for different
sizes of patches. The results are obtained using leave-one-
patient-out cross-validation based on the training subjects.
In our analyses, we measure the localization error as the
Euclidean distance between the estimated ROI location and
the one provided by the expert. As can be seen, the use of
1.8× 1.8 cm patches achieves the most stable performance,
yielding low ROI localization error with only a few outliers.

Figure 13: Combined interface localization error for dif-
ferent sizes of patches. The results are produced through
a leave-one-patient-out cross-validation study based on the
training subjects. Each box plots show the combined lo-
calization error of lumen-intima and media-adventitia in-
terfaces for a different size of patches. In our analyses,
we determine the localization error as the average of ab-
solute vertical distances between our detected boundaries
and the expert-annotated boundaries for the interfaces. As
can be seen, while our system shows a high degree of ro-
bustness against different sizes of input patches, the use of
patches of size 360× 360 µm achieves slightly lower local-
ization error and fewer outliers. Furthermore, this choice of
patches yields higher computational efficiency compared to
the larger counterpart patches.
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Agreement Analysis

We further analyze agreement between our system and
the expert for the assessment of intima-media thickness. To
this end, we use the Bland-Altman plot, which is a well-
established technique to measure agreement between dif-
ferent observers. We have shown the Bland-Altman plot for
the test subjects in Figure 14, where each circle represents
a pair of thickness measurements, one from our method and
one from the expert. As seen, the majority of circles fall
within 2 standard deviations from the mean error, which
suggests a large agreement between the automatically com-
puted thickness measurements and those of the expert. Fur-
thermore, Pearson product-moment correlation coefficient
for the average and difference measurements is -0.097, in-
dicating that the agreement between our method and the ex-
pert does not depend on intima-media thickness.

Figure 14: The Bland-Altman plot shows high agreement
between our system and the expert for the assessment of
intima-media thickness. Each circle in this plot represents
a pair of thickness measurements from our method and the
expert for a test ROI. In this plot, we have a total of 126
circles corresponding to 44 test videos.
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Automated Polyp Detection in Colonoscopy Videos
Using Shape and Context Information

Nima Tajbakhsh*, Member, IEEE, Suryakanth R. Gurudu, and Jianming Liang, Senior Member, IEEE

Abstract—This paper presents the culmination of our research
in designing a system for computer-aided detection (CAD) of
polyps in colonoscopy videos. Our system is based on a hybrid
context-shape approach, which utilizes context information to
remove non-polyp structures and shape information to reliably
localize polyps. Specifically, given a colonoscopy image, we first
obtain a crude edge map. Second, we remove non-polyp edges
from the edge map using our unique feature extraction and edge
classification scheme. Third, we localize polyp candidates with
probabilistic confidence scores in the refined edge maps using our
novel voting scheme. The suggested CAD system has been tested
using two public polyp databases, CVC-ColonDB, containing 300
colonoscopy images with a total of 300 polyp instances from 15
unique polyps, and ASU-Mayo database, which is our collection
of colonoscopy videos containing 19,400 frames and a total of
5,200 polyp instances from 10 unique polyps. We have evaluated
our system using free-response receiver operating characteristic
(FROC) analysis. At 0.1 false positives per frame, our system
achieves a sensitivity of 88.0% for CVC-ColonDB and a sensi-
tivity of 48% for the ASU-Mayo database. In addition, we have
evaluated our system using a new detection latency analysis where
latency is defined as the time from the first appearance of a polyp
in the colonoscopy video to the time of its first detection by our
system. At 0.05 false positives per frame, our system yields a polyp
detection latency of 0.3 seconds.

Index Terms—Optical colonoscopy, polyp detection, boundary
classification, edge voting, detection latency.

I. INTRODUCTION

C OLORECTAL cancer is the second-highest cause of
cancer-related deaths in the United States with approx-

imately 50,000 deaths in 2015 [1]. However, colon cancer is
preventable using effective screening tests. Colonoscopy is
the preferred technique for colon cancer screening and pre-
vention. The goal of colonoscopy is to remove colonic polyps
before they develop into colon cancer. Colonoscopy has been
a successful preventative procedure and has contributed to a
30% decline in the incidence of colorectal cancer [2]. How-
ever, colonoscopy is an operator dependent procedure. Human
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factors, such as lack of sensitivity to visual characteristics of
polyps, fatigue, and insufficient attentiveness during colon
examination, can lead to the miss-detection of polyps. Polyp
miss-rates are estimated around 4–12% [3]–[6]; however, a
more recent clinical study [7] projects this as 25%. Missed
polyps can lead to the late diagnosis of colon cancer with the
survival rate of less than 10% [8]. Computer-aided polyp de-
tection may help colonoscopists reduce their polyp miss-rates.
We proposed our initial system in [9] where Haar features

and a mixture of random forest classifiers were used to obtain
a refined edge map and then a new voting scheme was applied
to localize polyp candidates within the refined edge maps. We
improved our system in [10] by replacing Haar features with a
new patch descriptor and replacing a mixture of random forest
classifiers with a 2-stage edge classification scheme. We fur-
ther improved our system in [11] by introducing the notion of
narrow bands and isocontours to assign a probabilistic score to
each polyp candidate. Our current work presents an improved
presentation and rigorous evaluation of our system that was sug-
gested in [11]. Specifically, we have included new pseudocodes
and illustrations to improve the presentation of the system, em-
ployed a significantly larger database of polyps to strengthen our
evaluations, included new sensitivity analyses for parameters
of our system, performed more detailed performance compar-
isons, and introduced a new performance curve that overcomes
the limitation of the free-response receiver operating character-
istic (FROC) curves.
This paper represents the culmination of our research in this

area, it is self-contained, and summarizes our key contributions
from this research as follows:
• An efficient yet powerful patch descriptor: We present a
new feature extraction method in Section III.B that is de-
signed to operate at high speed and low computational
complexity. Our descriptor is both rotation invariant and
robust against linear illumination changes.

• An effective edge classification scheme: We suggest a
2-stage edge classification framework in Section III.C that
is able to enhance low level image features prior to clas-
sification. Our scheme fuses the information extracted
from a pair of patches to not only detect the desired edges
but to determine, on which side of the detected edges, the
desired structures reside.

• A robust voting scheme: We propose a voting scheme in
Section III.D that is designed to robustly detect polyps
as objects with curvy boundaries in the fragmented edge
maps. Unlike the existing alternatives, our scheme is not
limited to detecting objects with a specific parametric
model.

0278-0062 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. (a) Significant color variations between different instances of the same
polyp due to varying lighting conditions. (b) Significant color variations be-
tween different polyps. (c) Colonoscopy videos contain structures or artifacts
with similar geometric characteristics to polyps. These structures can mislead a
polyp detector that relies on context-free shape features.

• A flexible probability assignment technique: We present a
probability assignment technique in Section III.E that pro-
duces a probabilistic output for each polyp candidate. Our
method does not require any predefined parametric model
of shapes or any information about the size of polyps.

II. RELATED WORKS

The early work of Karkanis et al. [12] was published in 2003
where color wavelet features coupled with a slidingwindowwas
used for detecting polyps in colonoscopy images. This article in-
spired more research [13]–[16] on polyp detection using texture
and color descriptors. However, thesemethods are limited by (1)
partial texture visibility caused by the relatively large distance
between the polyps and the single-focus camera, and (2) large
color variations among polyps. Fig. 1(a) shows how lighting
conditions can cause color variations among different instances
of the same polyp. As seen, the same polyp appears in different
shades, ranging from dark to saturated colors. Fig. 1(b) shows
color variations among different polyps. The reliability of color
and texture based methods was also questioned in [17].
The other category of techniques for polyp detection em-

ployed shape and appearance features. Hwang et al. [18] sug-
gested elliptical shape features for detecting the shots of polyps
in colonoscopy videos. However, they did not consider image
context when extracting the shape clues, leaving the door open
for false positive detections around other elliptical structures in
the complex endoluminal scenes. Fig. 1(c) shows examples of
non-polyp structures that can mislead a polyp detector relying
on context-free shape features. Our previous works [9]–[11]
aimed to address this drawback by eliminating such misleading
structures from the images using contextual features. Bernal et
al. [17] employed valley information and a region growing ap-
proach to find polyps in colonoscopy images. Bernal et al. fur-
ther improved their method in [19] by reducing the number of
false positives around vascular structures and specular reflec-
tions, and presented further evaluations in [20].
The more recent systems have considered spatio-tem-

poral features, boundary features, and imbalanced learning.

Park et al. [21] suggested the use of spatio-temporal features
for polyp detection. Their method would require information
from the past and future frames for polyp localization at the
current frame, generating delayed feedback on the locations
of polyps. Tajbakhsh et al. [22], [23] employed convolutional
neural networks for learning discriminative spatial and temporal
features. However, unlike [21], their method was not reliant
on the future frames, avoiding the delayed feedback on the
locations of polyps. Wang et al. [24] used edge cross-sectional
profiles for detecting protruding polyps. Their method was
designed to capture shape, texture, protrusion, and smoothness
of the polyp surface. Finally, Bae and Yoon [25] proposed
a polyp detection system based on imbalanced learning and
discriminative feature learning.
Polyp detection and classification have also been considered

in CT colonography [26]–[32], wireless capsule endoscopy
[33]–[38], and narrow band imaging [39]–[41]. However,
the challenges posed by these imaging modalities differ from
that of colonoscopy. To design a polyp detection system for
colonoscopy, one needs to consider the effects of varying
lighting conditions, specular reflections, spontaneous colon
deformation, and diverse view angles of the camera. However,
such challenges do not or partially apply to the other imaging
modalities. For instance, while texture is not reliable for polyp
detection in colonoscopy, the pit patterns of polyps are heavily
used in narrow-band imaging; or while shape and curvature
clues have been successfully used for polyp detection in CT
colonography, they are misleading in the complex colonoscopy
images if not combined with the context clues.

III. PROPOSED METHOD

We propose a hybrid context-shape approach for polyp detec-
tion, because a pure shape-based approach may mislead a polyp
detector towards other polyp-like structures such as fecal con-
tent and reflection spots, and a pure context-based approachmay
not capture the discriminative geometric information of polyps.
We use distinct image appearance around polyp boundaries as

context clues. We have illustrated the distinct boundary appear-
ance around polyps in Fig. 2(a) by comparing average appear-
ance of polyp boundaries with that of vessels, lumen areas, and
specular reflections. To obtain average image appearance, we
collect oriented patches along the boundaries of vessels, spec-
ular spots, lumen areas, and polyps (see Fig. 2(b)) and then av-
erage the resulting patches for each structure of interest. We use
context information when designing our patch descriptor and
edge classification schemes.
We use curvature of polyp boundaries as shape clues. As

seen in Fig. 2(c), although polyps appear in different shapes,
they most often have a curvy segment in their boundaries. We
have highlighted these curvy segments with the blue rectangles.
We utilize shape clues through our voting scheme, which is de-
signed to localize polyps as objects with curvy heads.
As shown in Fig. 3, our polyp detection system consists of

four stages: (1) constructing an edge map for an input image,
(2) refining the edge map by classifying every edge pixel into
polyp and non-polyp categories using context information, (3)
localizing polyp candidates from the refined edge maps using
shape information, and (4) placing a band around each polyp
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Fig. 2. (a) From left to right: average appearance of polyps, lumen areas, ves-
sels, and specular reflection across thousands of image patches. As seen, the
image appearance around polyp boundaries is distinct. (b) To obtain average
image appearance, we collect oriented patches along the boundaries of vessels,
specular spots, lumen areas, and polyps and then average the resulting patches
for each structure of interest. (c) Although polyps appear in different shapes,
they most often have a curvy segment in their boundaries. We have highlighted
these curvy segments with the blue rectangles.

candidate to measure the probability of being a polyp. In the
following, we describe each stage of the suggested method for
automatic polyp detection.

A. Constructing Edge Maps
We apply Canny's method on the three color channels of the

input images to extract as many edges as possible, followed by
estimating gradient orientations for all the edge pixels in the
map. We later use the gradient orientations to extract oriented
patches around the edge pixels. Canny's algorithm computes
gradient directions based on the local image gradients in hor-
izontal and vertical directions; however, such estimations are
often not accurate, leading to a non-smooth gradient direction
map. Alternatively, we estimate gradient orientations by per-
forming ball tensor voting [42].

B. Feature Extraction
Our patch descriptor begins with extracting an oriented patch

around an edge pixel such that the edge segment appears verti-
cally in the middle of the patch. This representation allows us
to characterize intensity variation patterns across the edges in-
dependent of their orientations. We then divide each patch to
sub-patches of size with 50% overlap along horizontal
and vertical directions. Each sub-patch is then averaged verti-
cally, resulting in a 1D intensity signal , embedding intensity
variations along the horizontal axis. To summarize the patterns
of intensity variations, we then apply a 1D discrete cosine trans-
form (DCT) to the extracted signal and select the first few salient
DCT coefficients:

(1)

where

However, such a compact representation of the signal based
on DCT coefficients lacks robustness against changes in lighting
conditions: the DC coefficient, , is readily affected by a con-
stant change in the intensity of the patch, and intensity scaling
directly affects all the DCT coefficients. To overcome these
drawbacks, we remove the DC component and normalize the
rest of the DCT components using their -norm. For computa-
tional efficiency, we compute the -norm of only the selected
coefficients rather than all the resulting DCT coefficients. Fi-
nally, the salient coefficients selected from each sub-patch are
concatenated to form a feature vector for the extracted patch.
The suggested patch descriptor has 4 advantages. First, it is

fast because compressing each sub-patch into a 1D signal elim-
inates the need for the expensive 2D DCT. In addition, only
a few 1D DCT coefficients are computed from each intensity
signal, which further accelerates the feature extraction process.
Second, due to the normalization treatment applied to the DCT
coefficients, our descriptor achieves invariance to linear illumi-
nation changes and partial tolerance against nonlinear illumi-
nation variations over the entire patch, particularly if the non-
linear change can be decomposed to a set of linear illumination
changes on the local sub-patches. Third, our descriptor provides
a rotation invariant presentation of the intensity variation pat-
terns thanks to the consistent appearance of the edge segments
in the middle of oriented patches. Fourth, our descriptor han-
dles small positional changes, which is essential to cope with
patch variations due to edge mislocalization. In practice, spu-
rious edges around polyp boundaries and Gaussian smoothing
prior to Canny edge detector can cause inaccurate edge local-
ization where an edge pixel is found a few pixels away from the
actual location of the boundary. It is important for a patch de-
scriptor to provide a consistent image presentation in the pres-
ence of such positional changes. We decrease positional vari-
ability by selecting and averaging overlapping sub-patches in
both horizontal and vertical directions.

C. Edge Classification
The purpose of edge classification is two-fold: (1) discarding

as many non-polyp edges as possible and (2) determining on
which side of the retained edges the polyps are present. As
shown in Fig. 4, our classification scheme analyzes a pair of
oriented patches around each edge pixel and then depending
on the appearance of the image pair classifies the underlying
edge into either the polyp or non-polyp category and in the case
of a polyp edge, identifies on which side of the boundary the
polyp is present. In the following, we first explain how the image
pairs are collected and then describe the suggested classification
scheme.
After ball tensor voting, each edge pixel will be assigned a

structure tensor whose dominant eigenvector indicates the gra-
dient orientation. However, since the gradient orientation has no
particular directions, as shown in Fig. 5, one can assume two
normal directions for a given edge pixel, .
The image is then interpolated along the normal and edge di-
rections at each edge location, resulting in a pair of oriented
patches given the two possible normal directions. Our
classification scheme operates on each pair of patches and then
combines their information not only to classify the underlying



TAJBAKHSH et al.: AUTOMATED POLYP DETECTION IN COLONOSCOPY VIDEOS USING SHAPE AND CONTEXT INFORMATION 633

Fig. 3. Our polyp detection system given a test image. (a) The input image with a polyp inside. (b) An initial edge map is obtained (Section III.A). (c) The edge
map undergoes a classification scheme where the goal is to filter out non-polyp boundary edges (Sections III.B and III.C). In this stage, a voting direction is also
inferred by the classifier for each of the retained edges (blue arrows), which points to the polyp location. (d) Shape and curvature information of the retained edges
modulated by the inferred voting directions is employed in the suggested voting scheme (Section III.D) for polyp localization. As shown in the heat map, the votes
are accumulated in the region surrounded by the high curvature boundary. The pixel with maximum vote accumulation is considered as the polyp candidate. (e) A
band (a set of line segments in its discrete form) is automatically determined around the candidate to measure the probability of being a polyp (Section III.E). The
fraction of the line segments that hit the retained edges and meet some requirements determine the polyp likelihood for the generated candidate. For illustration
purposes, only a subset of the line segments is displayed. Our method is summarized as an algorithm in Fig. S1 in the supplementary material.

Fig. 4. The test stage of the suggested classification scheme. Pairs of oriented
patches extracted around each edge pixel are fed to the suggested feature ex-
traction and classification schemes. In the end result, the green pixels indicate
the edges that have passed the classification stage and the blue arrows point to
the possible location of a polyp.

Fig. 5. The green and red arrows show edge normal directions for a subset
of edge pixels on a boundary. As seen, the angle between each pair of normal
vectors is 180 . At each edge pixel, we extract two oriented
patches according to the two normal directions ). Each pair of patches

are horizontally mirrored to each other.

edge into polyp and non-polyp categories, but also to determine
which normal direction among and points towards the
polyp location. We refer to the determined normal direction as
“voting direction” in the rest of this article.
Our classification scheme has 2 stages. In the first stage, we

learn the image appearance around the boundaries of the struc-
tures of interest in contrast to random structures in colonoscopy
images. The structures of interest are chosen through a prior
misclassification analysis and consist of polyps, vessels, lumen

areas, and specular reflections.We train a 5-class classifier based
on the features generated by our patch descriptor to distinguish
between such boundaries in complex endoluminal scenes. In
other words, the classifier learned in the first stage measures the
similarities between the input patches and the predefined struc-
tures by learning a non-linear metric in the low level feature
space. The first layer can be also viewed as a feature enhancer
that takes low-level image features from the proposed patch de-
scriptor and produces mid-level similarity features.
The key to train the above classifier is to have a consistent

presentation for each of the structures of interest. A consistent
presentation is defined as a set of dedicated patches that all have
the structure of interest on one side (e.g., right) and the back-
ground on the other side (e.g., left). For this purpose, one must
choose the normal directions prior to patch extraction such that
they all point towards or away from the structures of interest.
Choosing normal directions in an arbitrary manner results in the
arbitrary appearance of the structure of interest on the left and
right side of the collected patches. Fig. 5 shows how the choice
of the normal direction places the gray region in the left and
right side of the resulting image patches.
To achieve patch consistency, we use the ground truth that

we have created for the structures of interest. The ground truth
definition depends on the structure of interest. For polyps, the
ground truth is a binary image where the polyp region is white
and background is black. When extracting polyp patches, we
choose the normal direction such that it points towards the polyp
region. For lumen areas and specular spots, the ground truth is
still a binary image but the white region corresponds to the dark
lumen and the bright specular reflection, respectively. For ves-
sels, the binary ground truth shows only the locations of ves-
sels—we do not assume any preferred normal directions, be-
cause the image appearance around the vessels is most often
symmetric. For random structures, we collect image patches at
random edge locations in colonoscopy images with arbitrary
choice of normal directions.
The goal of the second classifier is to group the underlying

edges into polyp and non-polyp categories and determine the
desired normal directions. For this purpose, we train the second
classifier based on the pairs of patches in the mid-level feature
space, which is generated by the first classifier. We use pairs of
patches because for a new image no information about the polyp
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Fig. 6. The training stage of the suggested classification scheme.

location nor about the desired normal directions is available.
The classifier learns the desired normal directions by combining
the information from each image pair. The training process of
the suggested classification scheme is illustrated in Fig. 6, is
summarized in Fig. S2 in the supplementary material, and is
further explained as follows:

1) Layer 1:
• Step 0: We collect a stratified set of oriented patches
around the boundaries of polyps, vessels, lumen areas,
specular reflections, and random structures in the training
images. Mathematically,

Note that asterisk indicates that the patches are extracted
according to the desired normal directions, which are avail-
able given the ground truth for the training images.

• Step 1: Once patches are extracted, we train a five-class
classifier in the low level feature space created by the pro-
posed patch descriptor. The trained classifier generates 5
probabilistic values for each input low level feature vector,
which reflect to what degree the underlying patch resem-
bles the appearance of the five predefined structures.

2) Layer 2:
• Step 2:We select edge pixels from boundaries of polyps
and other structures in the training images. From th edge
pixel, we extract an ordered pair of patches where

. This convention is to keep patches in a con-
sistent order. Each pair of patches is then assigned a label,

,
which is determined as follows:

(2)

• Step 3: We extract low level features from each pair of
patches using the suggested patch descriptor and then
apply the classifier trained in Step 2, resulting in two
arrays of mid-level features.

• Step 4: We generate a mid-level feature vector for the un-
derlying edge by concatenating the two arrays of mid-level
features, .

• Step 5: We train a 3-class classifier based on concatenated
mid-level features. The classifier determines if an edge be-
longs to a polyp boundary and if so determines the normal
direction.

During the test stage, the underlying edge of each image pair
is declared as a polyp edge if

which is met if and only if

Therefore, the underlying edge of each pair of patches is classi-
fied according to the following rule:

(3)

where is the desired normal direction or voting direction.
The other alternative to (3) is to assign the edge pixel to the
class with maximum probability, but this cannot handle uncer-
tain situations where the probability associated with one class is
only slightly larger than each of the other two individual classes.
Once all the edges within an edge map are classified, non-polyp
edges are removed from the edge map and the remaining edges
along with their corresponding voting directions are sent to the
voting scheme for polyp localization.

D. Voting Scheme
Our voting scheme is designed to localize polyps by identi-

fying their curvy heads. This is achieved by generating a heat
map where higher temperature is assigned to the regions that are
surrounded by curved boundaries.
The voters that participate in our voting scheme are the edges

that have passed the classification stage. Therefore, the th voter
comes with a voting direction and a classification confidence
. The vote cast by the voter at a receiver pixel is

computed as

(4)
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Fig. 7. (a) A voting function for an edge pixel. (b) The resultant voting map
for a synthetic scene when the generated votes are accumulated in one voting
map. Undesirably, large vote accumulation is observed around the parallel lines.
(c) The resultant voting map for the same scene when the generated votes are
accumulated in voting maps and then multiplied (5). As seen, votes are
desirably accumulated only in the object with the curvy boundary.

where the only unknown parameter is , which controls the
size of the voting field. We have shown in Fig. 7(a) the voting
function for a voter on an edge segment. As seen, the voter casts
votes according to its voting direction , and thus the voting
field appears only one side of the edge segment. Furthermore,
the magnitude of votes smoothly decreases along the radial and
angular directions due to the exponential and cosinusoidal terms
in the voting function.
Our voting scheme begins by dividing the voters into cat-

egories based on their voting directions,
. We then per-

form the voting process for each category of the voters and col-
lect the resulting votes from each category in a separate voting
map. Next, we multiply the voting maps and select the pixel
with maximum vote accumulation as a polyp candi-
date. Mathematically,

(5)

It is essential for our voting scheme to prevent vote accu-
mulation in the regions that are surrounded by low curvature
boundaries, because such regions in general cannot represent
the curvy heads of polyps. This was achieved in our voting
scheme by grouping edges prior to vote casting and multiplying
the resultant voting maps. The rationale is that pixels on low
curvature boundaries contribute to only a small fraction of the

to-be-multiplied voting maps. To clarify this, we generate a
synthetic image and compare the resulting voting maps with and
without the map multiplication strategy. The synthetic image
consists of edge pixels that are arranged on a polyp-like struc-
ture and on a set of parallel lines. Fig. 7(b) shows the vote accu-
mulation map when the votes cast by the voters are all accumu-
lated in one voting map, . As seen, the votes are
accumulated in two regions: inside the curvy structure which

Fig. 8. Incorporating voting directions improves the accuracy of polyp
localization. The edges retained after classification are shown in green. (a) A
colonoscopy image and its corresponding voting map when the voters cast
votes along both possible normal directions. As seen, the polyp candidate
(MVA) is placed outside the polyp region. (b) The same colonoscopy image
and its corresponding voting map when the voters cast votes only along the
inferred voting directions. The polyp has been localized successfully.

is desirable, and between the parallel lines which is undesir-
able. Fig. 7(c) shows the voting map for the same image when
edge grouping and map multiplication are employed (see (5)).
As seen, the accumulator assigns low values to the region be-
tween the parallel lines, and high values to the region inside the
polyp-like structure.
Another important characteristic of our voting scheme is the

utilization of voting directions that, as shown in Fig. 7(a), limits
a voter to cast votes only along its assigned voting direction.
Ignoring voting directions and allowing the voters to vote
along both possible normal directions result in vote
accumulation on both sides of the boundaries, which often leads
to polyp mislocalization. This is illustrated in Fig. 8(a) where no
selectivity in voting directions causes polypmislocalization, but
including such a selectivity allows for correct polyp localization
(Fig. 8(b)). Our voting scheme is summarized in Step 3 of Fig.
S1 in the supplementary material.

E. Probability Assignment
The magnitude of vote, accumulated at a polyp candidate,

is not suitable for inferring a probabilistic score. This is be-
cause the magnitude of vote changes proportional to the scale
of polyps. The larger the polyp, the larger the number of voters
and thus the larger the magnitude of accumulated votes. Alter-
natively, we estimate a probabilistic score for a polyp candidate
by determining the contributing voters within a narrow band
around each polyp candidate. If the narrow band around a polyp
candidate contains contributing voters in a larger number of di-
rections, the candidate will have a higher likelihood of being a
polyp.
We parametrize the narrow band as a set of radial lines :

(6)

where the unknown parameters of the band are the bandwidth,
, and a set of distances, , between the candidate location
and the corresponding point on the band skeleton . We have
shown an example of the narrow band in Fig. 9. Once the
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Fig. 9. A narrow band is determined around each polyp candidate to generate
a probabilistic score. The blue contour is the band skeleton and the red lines are
a subset of the radial line segments that represent the band in its discrete form.

band is formed, the probability assigned to a polyp candidate
is computed as

(7)

where denotes the set of angles along which the voters are
searched and is the cardinality of . We consider the dis-
crete set for probability computation.
In (7), is an indicator variable that takes 1 if the line segment
hits at least a voter whose voting direction points toward

the candidate location:

(8)

We estimate the unknown parameters of the bands from the
isocontour of the voting maps. The isocontour of the
voting map is defined as
where denotes the maximum of the voting map and
is a constant between 0 and 1. Fig. 10(a) shows a synthetic
shape, its corresponding voting map, and the isocontours for

. As seen, the isocontours
become increasingly similar to the synthetic shape as the
constant decreases. This suggests that the isocontours that
are farther away from MVA are more suitable for predicting
the shape of the synthetic object and thus the parameters of
the narrow band. However, in practice, such isocontours may
be affected by other nearby voters in the scene. On the other
hand, the isocontours that are located very close to MVA do
not follow the shape of the object and thus are not suitable for
our purpose. We therefore obtain a set of isocontours and then
take their median shape as the representative isocontour of
the voting map (Fig. 10(b)). We choose this set of isocontours
so that their corresponding level uniformly covers the range
(0,1). We have experimented with different sets of isocontours
and found out that as long as they are uniformly selected, the
resulting representative isocontour serves the desired purpose.
We use the isocontours shown in Fig. 10(a) for the rest of the
experiments.
Let denote the distance between the th point on the rep-

resentative isocontour and the candidate location. We use
to predict , the distance between the corresponding point on
the object boundary and the candidate location (see Fig. 10(b)).

Fig. 10. (a) Isocontours of a synthetic shape for
. The isocontours, shown in blue, become

increasingly similar to the synthetic shape as the constant decreases. (b) The
white contour shows the representative isocontour , which is computed as
the median shape of the blue isocontours. We use the representative isocontour
to localize a band around the boundary of the synthetic shape.

For this purpose, we employ a second order polynomial regres-
sion model

(9)

where , and are the regression coefficients that we es-
timate using a least square approach. The regression model in
(9) yields the distance to the object boundary with a perdition
interval. We choose the narrow band so that its skeleton approx-
imates the object boundary. As a result, s are the unknowns
s and the prediction interval is the unknown bandwidth .

Therefore, given the candidate location and the representative
isocontour, one can estimate the unknowns ( s and ) and then
compute the probability using (7). We have shown in Fig. 11 a
pseudocode that details how the band is formed and how a prob-
abilistic score is generated given a voting map.

IV. EXPERIMENTS

We use a publicly available polyp database CVC-ColonDB
[43] and our collection of short colonoscopy videos to evaluate
our polyp detection system. We first employ CVC-ColonDB
[43] for both tuning and evaluating the suggested system and
then further evaluate our polyp detection system using our col-
lected videos.

A. Evaluation Using CVC-ColonDB [43]
CVC-ColonDB is a public polyp database that contains 300

colonoscopy images each with a polyp inside. These images are
selected from 15 short colonoscopy videos such that the images
showmaximum variation in scale and view angles of the polyps.
Each image in this database comes with a binary ground truth
image where the polyp and background regions are shown in
white and black, respectively.

1) Edge Detection: To determine the degree of Gaussian
smoothing prior to performing the Canny edge detector, we
performed a set of experiments and investigated how changes
in Gaussian smoothing can affect the percentage of polyp edges
that can be detected by the Canny in each of the 300 images.
For this purpose, we compare the resulting edge maps against
the ground truth for polyps. To do so, for each boundary pixel in
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Fig. 11. This pseudocode shows how a probabilistic score is computed for a
polyp candidate.

Fig. 12. Effect of Gaussian smoothing on the sensitivity of the Canny edge
detector. Each box plot shows the percentage of polyp edges detected by Canny
in the 300 colonoscopy images of CVC-ColonDB.

the ground truth, we find the closest edge pixel in the edge map
and if the distance is less than 10 pixels, we mark that polyp
boundary pixel as detected. Note that we always have some de-
grees of edge mislocalization due to Gaussian smoothing before
applying the Canny. Once all the polyp boundary pixels are la-
beled, we can measure polyp edge detection rate.
We have shown in Fig. 12 the polyp edge detection results

for different amounts of Gaussian smoothing. The whiskers are
plotted according to the Tukey's method [44]. The red crosses
below the box plots correspond to the polyps that have faint edge
segments in their boundaries. As seen, the Canny edge detector
can effectively capture a high percentage of polyp edges partic-
ularly for the small values of . However, in practice, small

values of result in very cluttered edge maps, complicating
edge direction estimation with ball tensor voting. Therefore, we
use for the rest of our experiments.

2) Feature Extraction and Edge Classification: We em-
ployed 5-fold cross validation to train and test our 2-stage
classification system. We collected oriented
image patches of size 64 64 with approximately 20,000
samples for each of the five chosen structures to train a random
forest classifier for the first stage, and pairs of
oriented image patches of size 64 64 to train another random
forest classifier for the second stage. We have selected patches
of size 64 64, because they are more suitable for capturing
context around the boundaries. In the supplementary material,
we have analyzed overall performance for different sizes of
patches. The choice of a random forest classifier is motivated
by its recent success in a variety of computer vision and med-
ical image analysis applications where it outperformed other
widely-used classifiers such as AdaBoost and support vector
machines [45]. The two main ingredients of a random forest
classifier are bagging of a large number of fully grown decision
trees and random feature selection at each node while training
the trees, which together achieve low generalization error and
high quality probabilistic outputs. In our experiments, we kept
adding decision trees to the random forest classifiers until the
decreasing trend of out-of-bag error converged. According to
our experiments, 100 fully grown decision trees achieved a
stable out-of-bag error for both random forest classifiers.
Fig. 13(a) shows the receiver operating characteristic (ROC)

curves of the first classification layer for the suggested patch
descriptor and the other widely used descriptors such as HoG1

[46], LBP2 [47], and Daisy3 [48]. The first stage classifier is
trained for a 5-class classification problem; however, to avoid
clutter in this figure, we have shown only the ROC curves cor-
responding to “polyp vs. rest” classification scenario. As seen,
our descriptor surpasses HOG and LBP with a large margin
and outperforms Daisy with a smaller yet statistically signifi-
cant margin4 . In addition to superior classifica-
tion performance, our descriptor runs approximately 30 times
faster than its closest competitor (Daisy), which makes it fur-
ther amenable to the suggested classification scheme.
For fair comparisons between the patch descriptors, we used

the same training set for parameter tuning and and the same
test set for performance evaluation. For our descriptor, we used
8 16 sub-patches in each image patch and extracted 3 DCT
coefficients from each sub-patch, which yielded a good bal-
ance between the size of feature vectors and the discrimination
power. This configuration resulted in a feature vector with 315
elements for each image patch. For LBP, we divided each patch
into cells of size 8 8 and for each cell we computed the nor-
malized histogram of rotation invariant uniform patterns using a
3 3 neighborhood around the pixels. The resulting 10-bin his-
tograms from all the cells were then concatenated to form the
final feature vector. For HoG, we used cells of size 8 8 pixels

1lear.inrialpes.fr/pubs/2005/DT05/
2www.cse.oulu.fi/CMV/Downloads/LBPMatlab
3cvlab.epfl.ch/software/daisy
4DeLong's method usingMedCalc forWindows, version 13.3 (MedCalc Soft-

ware, Ostend, Belgium)
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Fig. 13. (a) ROC curves of the first-stage edge classifier for “polyp vs. rest” classification scenario. Our patch descriptor surpasses HOG and LBP with a large
margin and outperforms Daisy with a smaller yet statistically significant margin. Our descriptor runs approximately 30 times faster than Daisy. (b) Feature impor-
tance computed by the first-stage random forest classifier. Comparison with (c), which is the average image appearance around polyp boundaries, suggests that
important features are more densely located inside the polyp region and across the polyp boundary. The characteristic stripes in the importance map, on average,
show a decreasing trend, suggesting that lower frequency DCT coefficients are more important. (d) ROCs of the second-stage edge classifier for the three possible
“one vs. rest” classification scenarios. (e) ROCs of the 1-stage and 2-stage edge classification scheme in the “polyp vs. rest” classification scenario.

and blocks of size 2 2 cells or 16 16 pixels. We computed
a gradient histogram with 9 orientation bins for each block and
then concatenated the resulting histograms. For Daisy, we de-
fined three concentric rings around the center of the patch and
then selected 8 equally spaced points on each ring. Next, we
concatenated 8-bin gradient histograms computed at each of the
selected points.
To further analyze our patch descriptor, we visualize the vari-

able importance computed by the random forest classifier for
each of the extracted features. Random forest calculates the im-
portance of feature in each tree and then takes their average
to compute the overall importance of feature . To measure
importance of feature in each tree, random forest permutes
the values of this feature in the out-of-bag samples randomly
and then measures the subsequent increase in the misclassified
samples. A feature is considered more important if the corre-
sponding permutations further increase the. We collect the vari-
able importance of all the 315 features and then reshape them
into a matrix form such that each feature gets mapped to the part
from which it has been extracted.
We have shown the importance matrix in Fig. 13(b). For

easier comparison with the average appearance around polyp
boundaries (see Fig. 13(c)), we scale up the importance matrix
to the same size as the input image patches. As seen, while the
important features are found all over the importance map, they
are more densely located inside the polyp region and across
the polyp boundary. The relatively less number of important
features on the background side (left side) of the patches can be
explained by the large variability in the backgrounds of polyps.
The importance matrix also contains characteristic stripes that
show the importance of the 3 DCT coefficients extracted from
each subpatch. Averaging these stripes across the importance
matrix reveals a decreasing trend in the importance of the DCT
coefficients, where the 1st and 3rd coefficients are, respectively,
the most and least important features. This can be explained by
the susceptibility of higher frequency DCT coefficients to noise
and other degradation factors that may appear in the images
patches.
Fig. 13(d) shows the ROC curves for the edge classifier of

the second classification layer in 3 possible “one vs. rest” clas-
sification scenarios. Recall that the polyp class and the desired
voting directions are embedded in 3 labels. To avoid clutter in
this figure, we have shown only the ROCs corresponding to
the suggested patch descriptor, which outperformed the other

TABLE I
POLYP DETECTION RATES AT 0.05 FALSE POSITIVES PER FRAME

FOR DIFFERENT CONFIGURATIONS OF THE VOTING SCHEME

competing feature extraction methods in the first classifica-
tion stage. As seen, our edge classification scheme tends to
underperform for polyp edges with . This is because
these edges most often lie on the low gradient boundaries of
polyps, where they attach to the colon wall. As a result, the
corresponding patches show indistinct appearance features,
causing edge misclassification.
We have further compared edge classification performance

with and without the second classification layer. We perform
this comparison in “polyp vs. rest” classification scenario using
the stratified set of 100,000 pairs of oriented patches. The com-
parison is shown Fig. 13(e). As seen, employing the second clas-
sification layer leads to a significantly higher area under ROC
curve , demonstrating the effectiveness of the
suggested two-stage classification scheme. In Section IV.B, we
will further demonstrate that employing the second classifica-
tion layer significantly improves polyp detection performance
in colonoscopy videos.

3) Voting Scheme and Probability Assignment: We trained a
number of regression models for different values of and ,
and investigated how the choice of these parameters affected
polyp detection performance. Because the goal of the voting
scheme was to detect the curvy heads of polyps, we designed
a shape generator model that could produce objects resembling
the curvy heads of polyps. We used these synthetic shapes to
collect pairs of and then constructed a regression
model for each combination of and . We have explained
our shape generator model and the protocol for training the re-
gression models in the supplementary material. Table I com-
pares the polyp detection rates of these models at 0.05 false
positives per frame. As seen in Table I, we achieved relatively
stable results for a wide range of and , but obtained the
best result using and .
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Fig. 14. Successful polyp localization. The edges retained after classification
are shown in green. The blue line segments indicate the radial lines that have
reached the contributing voters within the estimated bandwidth.

Fig. 14 shows examples of successful polyp localization
using our voting scheme. For better visualization, we superim-
pose the voting heat maps on the original images and show only
a number of the constituent line segments of the discrete bands.
We use color coding with blue indicating the line segments that
hit at least a voter with the desired voting direction (see (8)),
and red otherwise. As seen, our polyp detection system is able
to localize polyps of different shapes, scales, and colors.
To demonstrate the effectiveness of the suggested voting

scheme, we compare the polyp localization accuracy of our
system using our voting scheme and the phase-coded Hough
transform [49]. For fair comparisons, we applied both algo-
rithms on the same refined edge maps and chose the maximum
response in the corresponding map as the location of a polyp
candidate. Also, the radius range of the Hough transform was
tuned to detect the smallest and biggest polyps in the database.
According to our experiments, the phase-coded Hough trans-
form placed the polyp candidates inside 246 out of the 300
polyps with 54 false positives, which was outperformed by our
voting scheme with 262 true positives and 38 false positives.
We have also compared our voting scheme with the phase-

coded Hough transform using an FROC analysis. For this pur-
pose, we changed a threshold on the scores assigned to the polyp
candidates by both algorithms and then computed the sensi-
tivity and the number of false positives at each threshold. For
the Hough transform, the scores were selected from the Hough
voting maps at the candidate locations. For our method, the
scores were generated based on the narrow bands. As shown in
Fig. 15, our voting scheme significantly outperforms the Hough
transform in all the operating points. For a more detailed com-
parison, we have also included the operating points of other
polyp detection systems5 suggested in the literature. As seem,
our CAD system outperforms the other methods with a large
margin.

B. Evaluation Using Our Collected Videos
Our database of colonoscopy videos6 is, to our knowledge,

the largest annotated polyp database. We have selected 10 pos-
itive shots and 10 negative shots from our database. A positive

5Note that the operating point shown for [17] was not available in their pub-
lished manuscript—it was kindly provided by the corresponding author.

6available at http://tinyurl.com/polyp2015

Fig. 15. FROC curves of our system and the other competing methods for
CVC-ColonDB. Our CAD system using the suggested voting scheme excels in
all the operating points.

shot is a segment of a colonoscopy video that displays a unique
polyp at multiple scales and from different viewing angles. A
negative shot is a segment of a colonoscopy video that does not
contain a polyp. The selected shots consists of 5200 frames with
polyps and 14,200 frames with no polyps inside. These images
show a large degree of variability in the colonoscopic view, in-
cluding varying levels of colon preparation, different colono-
scopic events, narrow band imaging, and different amounts of
motion and interlacing artifacts. As with CVC-ColonDB, each
frame in our database comes with a binary ground truth image
where the polyp region is shown in white. If an image contains
no polyp, the corresponding ground truth will be a completely
black image. To create the ground truth, our expert colono-
scopists first determined the locations and extents of a few polyp
instances in each video. Then, following the expert annotations,
a number of trained volunteers created the ground truth for the
remaining frames in each video. The resulting truth was then
reviewed by our experts.
For video-based evaluation, we trained our system on the

entire CVC-ColonDB using the previously tuned parameters
and . The shaded FROC curve shown in

Fig. 16 displays the variation in our system's performance
when changes between 70 and 100. As seen, our system
using the suggested 2-stage edge classifier yields relatively
stable performance over a wide range of voting field sizes,
generating on average 0.11 false positives per frame (FPPF)
at 50% sensitivity. Similar to CVC-ColonDB, the best FROC
curve is obtained using , demonstrating the robustness
of the suggested system across different databases.
In Fig. 16, we further compare the performance of our polyp

detection system using 1) the suggested 2-stage edge classifier,
and 2) an alternative 1-stage edge classification scheme. The
latter is realized by simply discarding the second classifier in our
classification scheme. Basically, after a pair of patches passes
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Fig. 16. FROC curves of our polyp detection system based on 20 short
colonoscopy videos. The suggested 2-stage edge classification scheme sig-
nificantly improves the overall polyp detection performance compared to the
scenario where our system employs a 1-stage edge classifier.

the first classifier, we obtain two sets of probabilities (mid-level
features). To determine a polyp edge, one can compare the polyp
probabilities between the two patches and check whether the
larger probability is above the classification threshold of 0.5.
The desired normal direction is also determined as the normal
direction associated with the patch with the larger probability.
As seen in Fig. 16, the suggested 2-stage edge classifier sig-
nificantly outperforms the 1-stage edge classifier in nearly all
operating points. Another observation is that the maximum sen-
sitivity achieved by the 2-stage edge classifier is higher than that
of the 1-stage counterpart, indicating that the refined edge maps
produced by our suggested classification scheme can better re-
tain polyp boundaries and are thus more suitable for polyp lo-
calization.
One limitation of the FROC analysis may be that it does not

account for the factor of time, simply measuring sensitivity to
polyps in the entire videos. However, polyps that are missed
in colonoscopy videos most often appear in the colonoscopic
view briefly. Therefore, a polyp CAD system with high sen-
sitivity yet with large detection latency may provide limited
clinical value. Hence, we propose a variant of the FROC anal-
ysis, called the detection latency analysis, which replaces the
sensitivity on the vertical axis with the median detection la-
tency of the positive shots. Let denote the arrival frame of
a polyp in a video and denote the frame where our CAD
system detects the polyp. We measure the detection latency of
a positive shot as where is the
frame rate of the video. Fig. 17 shows the detection latency
of the suggested system using the previously tuned parame-
ters and . The shaded FROC curves shown
in Fig. 16 display the variation in our system's performance
when changes between 70 and 100. As seen, our system
achieves low detection latency in a wide range of operating
points, detecting polyps in less than 1 second upon their ap-
pearance in the videos. In addition, given a fixed number of
false positives, our system using the suggested 2-stage classi-
fiers achieves shorter polyp detection latency compared to the
1-stage classification scenario.

Fig. 17. Detection latency of our polyp detection system based on 20 short
colonoscopy videos. The suggested 2-stage classification scheme yields signif-
icantly shorter polyp detection latency particularly in low false positive rates.

V. DISCUSSION

In the previous sections, we presented a CAD system for
detecting colonic polyps in colonoscopy videos, and eval-
uated it on 2 polyp databases: (1) a public polyp database,
CVC-ColonDB, containing 300 colonoscopy images with a total
of 300 polyp instances, and (2) our collection of colonoscopy
videos containing 19,400 frames and a total of 5,200 polyp
instances. We characterized the performance of our CAD
system using FROC and detection latency analyses. At 0.1
false positives per frame, we obtained a sensitivity of 88.0%
for CVC-ColonDB and a sensitivity of 48% for our collection
of colonoscopy videos. We also observed a detection latency of
0.3 seconds at 0.05 false positives per frame. The performance
variation between these two databases could be caused by the
insufficient number of images in CVC-ColonDB, and more
importantly, absence of images that have no polyps inside. This
limitation is overcome in our database by including 14,200
frames with no polyps inside.
Table II summarizes the operating points for our CAD system

and the other methods that have recently been suggested in the
literature. As seen, the majority of the recent systems have used
different databases for evaluation. We can fairly compare our
system against only the systems suggested in [17], [19], [25],
[9], because they also use CVC-ColonDB for performance eval-
uation. The tabulated operating points for these systems are
selected from Fig. 15. CVC-ColonDB allows us to draw fair
performance comparisons; however, this database is not suffi-
ciently large for a solid evaluation of polyp detection systems.
To enable more rigorous evaluation and facilitate future perfor-
mance comparisons, we have released our annotated polyp data-
base to the public.
The work of Bernal et al. [17] is probably the most similar

to our approach. Fig. 15 shows that our system outperforms
this method as well as the other competing systems. Here, we
would like to intuitively discuss the reasons behind our supe-
rior performance. In [17], valley information is used for polyp
localization, which corresponds to the features that we extract
from the middle part of the oriented patches. However, as seen
in Fig. 13(b), features from other parts of the patches can also
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TABLE II
RECENT POLYP DETECTION METHODS DESIGNED FOR OPTICAL COLONOSCOPY. AS SEEN, THE EXISTING METHODS HAVE BEEN EVALUATED USING
DIFFERENT DATASETS AND THEIR RESULTS HAVE BEEN REPORTED BASED ON DIFFERENT PERFORMANCE METRICS (FPPF: FALSE POSITIVES PER
FRAME, FPR: FALSE POSITIVE RATE, FPPS: FALSE POSITIVES PER SHOT). OUR WORK CAN BE FAIRLY COMPARED AGAINST [17], [19], [9], [25],

BECAUSE ALL THE FIVE SYSTEMS HAVE BEEN EVALUATED USING THE SAME PUBLIC DATABASE

provide discriminative power for polyp boundary classification.
Their work further assumes polyps as circular structures whose
radii vary in a pre-specified range, but our approach does not
make such assumptions and automatically estimates the shapes
and scales of polyps using the narrow bands.
In the design of our patch descriptor, we prefer the DCT

over other transforms such as Discrete Sine Transform (DST)
and Discrete Fourier Transform (DFT), because the DCT is
more suitable for compressing patch information. Specifically,
the DFT assumes that the intensity signal is a part of a periodic
signal; therefore, if the intensity values at both ends of the inten-
sity signal are not equal will appear as a
part of non-continuous periodic function to the DFT, yielding
large high-frequency Fourier coefficients, and preventing the
information (energy) of the signal to be compressed in a few
Fourier coefficients. Large high frequency components will also
appear in the case of the DST, if the intensity signals have non-
zero values at their both ends . In con-
trast, the DCT relaxes these constraints, requiring only smooth
behavior at both ends of the intensity signals. This property is
more amenable to our application, because the intensity signals,
which are obtained by averaging the corresponding sub-patches,
are usually smooth without abrupt changes at both ends.
In Section IV.A2, we experimentally found out that the first

three DCT coefficients (excluding the DC component) are the
most suitable for feature extraction. To intuitively explain this
choice of coefficients, Fig. 18 shows the basis functions cor-
responding to the first 4 DCT coefficients: the first DCT basis
function corresponds to the DC component, the second onemea-
sures whether the intensity signal is monotonically decreasing
(increasing) or not, the third one measures the similarity of the
intensity signal against a valley (ridge), and finally the fourth
one checks for the existence of both a valley and a ridge in the
signal. The higher order basis functions are more suitable for
modeling high frequency changes, which we rarely observe in
our smooth intensity signals. Therefore, the number of desired
coefficients can be intuitively determined without resorting to
more complicated feature selection algorithms.
Our edge classification scheme consists of two stages where

the first stage serves as a feature enhancer and the second stage
performs the main classification task. However, one may dis-

Fig. 18. Basis functions corresponding to low frequency DCT coefficients.

card the second classifier, and perform edge classification and
determine voting directions merely based on the outputs of the
first classifier. In Section IV.B, we demonstrated that this de-
teriorates the performance of the edge classification scheme.
Here, we would like to discuss the necessity of the second clas-
sification layer from a different perspective. Consider the fol-
lowing two sets of probabilities generated by the first classifier
for a pair of image patches extracted from the th edge pixel,

and , where the
probabilities, respectively, measure the similarity of each patch
to boundary appearance of polyps, vessels, lumen area, specular
reflections, and other random structures. The resulting probabil-
ities suggest that patch resembles the appearance of a polyp
boundary and that resembles the boundary appearance of
specular reflections. This produces uncertainty as to the deci-
sion regarding the underlying edge pixel. The choice is to either
rely on the first patch and declare a polyp edge with edge normal
being or consider information from the counterpart patch and
declare a non-polyp edge. One way to resolve this issue is to de-
fine a number of decision rules that may only achieve a sub-op-
timal solution. Alternatively, we choose to train a second clas-
sifier in the mid-level feature space, exploring all such decision
rules in a systematic manner.
In Section III.C, we explained how the suggested classifi-

cation scheme inferred the voting directions for a given edge
map. However, one may argue that the voting direction for
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Fig. 19. The suggested edge classifier determines voting directions more reli-
ably than a brightness-based approach. (a) The voting directions determined by
the edge classifier correctly point inward (toward the polyp region). (b) Specular
reflections, highlighted by the red arrow, result in erroneous voting directions
when using brightness-based approach. This drawback is overcome by the sug-
gested edge classifier.

an edge pixel could be simply chosen as the normal direction
that would result in a patch with higher intensity values on its
right side. This argument could stem from Fig. 13(b), which
suggests that polyps, on average, appear brighter than their
surrounding regions. While this simplistic approach may be
effective in some cases, there are many polyp instances for
which this approach fails to yield the correct voting directions.
Fig. 19 shows two such examples. Fig. 19(a) display a polyp
that appears darker than the colon surface. As seen, while the
voting directions determined by the classifier correctly point
inward (towards the polyp), the green arrows determined by
the brightness-based approach point both inward and out-
ward. Furthermore, existence of specular reflection around the
boundaries of polyps can also complicate the estimation of
voting directions based on average brightness. This is shown
in Fig. 19(b) where the brightness-based method influenced by
the specular spot (shown by the red arrow) results in wrong
voting directions whereas the learning-based method still yields
correct voting directions. Therefore, average brightness may
not be reliable for determining the voting directions.
The size of voting fields, controlled by , determines the

size of polyps that can be detected by our CAD system. In
Sections IV.B and IV.A3, we extensively studied the choice of

and foundout that works the best for both databases.
This is probably because the majority of polyp instances in both
CVC-ColonDB and our collection of videos appear in small or
moderate sizes in the colonoscopic view. This choice of can
potentially lead to the misdetection of the polyps that appear
large in the videos, but we do not consider that as a drawback for
our polyp detection system. This is because polyps that appear
large in the videos probably have already been detected and are
under examination by colonoscopists; therefore, there are no
clinical needs for computer-aided polyp detection. Furthermore,
the physical size of a polyp differs from what “appears” in the
videos: the former is fixed but the latter varies depending on the
distance between the polyp and the camera. Therefore, our CAD
system can also detect physically large polyps when they have
not been reached by the camera and thus appear in small or
moderate size in the colonoscopic view.

Fig. 20. Unsuccessful polyp localization. (a) Polyp mislocalization due to the
failure of the Canny edge detector in capturing the curvy head of the polyp.
This is caused by the weak boundaries in the region highlighted with the blue
rectangle. (b) Polyp mislocalization due to the failure of the edge classification
stage. Majority of the polyp boundary pixels are classified as non-polyp, be-
cause intensity variation patterns around polyp boundaries are corrupted by the
interlacing artifact.

Our method can detect multiple polyps in each frame if we
consider all the local maxima in (5). However, since a patient
may have only a small number polyps (if any) in his/her entire
colon, there is a slender chance that they all cluster in a small
area of the colon. Therefore, we chose to find the global max-
imum of the voting map in (5), which allows for detection of
at most one polyp in each frame. However, this does not mean
that our method cannot detect multiple polyps in a patient. For
a more intuitive discussion, consider the scenario where two
polyps, for instance, Polyp A and Polyp B, have appeared in
the same frame. If these two polyps are relatively far apart, then
one of the polyps, Polyp A (or B), has certainly appeared first
in the colonoscopic view alone and thus will exist earlier from
the colonoscopic view during the scope withdrawal, leaving the
other Polyp, Polyp B (or A) alone in the colonoscopic view.
Also, if the two polyps appear in the same frame yet very close,
there may be no clinical needs to detect both of them, because
the feedback on one polyp will automatically bring the other one
into colonoscopist's attention.
The suggested CAD system may fail to detect the polyps

that have faint gradients around their boundaries. A faint
polyp boundary is likely to be missed by the edge detector,
causing the polyp to appear as a non-curvy structure in the
resulting edge map, resulting in a polyp localization failure.
Fig. 20(a) shows an example of a missed polyp where the
curvy head of the polyp is not captured by the Canny edge
detector. Unsuccessful edge classification can also cause lo-
calization failures. Colonoscopy frames may contain motion
blurriness and interlacing artifacts that can corrupt the desired
intensity variation patterns around the polyp boundaries. As a
result, polyp boundary pixels will be classified as non-polyp
edges, causing the polyps to appear as a non-curvy structure to
the voting scheme. Fig. 20(b) shows an example of a missed
polyp where the boundary is corrupted with the interlacing arti-
fact. While it would be interesting to perform a comprehensive
robustness analysis against different levels of such artifacts,
it might be more effective to remove or mitigate these arti-
facts prior to polyp detection. This underlines the importance
of image quality assessment in colonoscopy, a topic that we
have considered in our previous work [50].
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On a desktop computer with a 2.4 GHz quad core Intel,
our CAD system processes each colonoscopy image at 2.6
seconds on average, which is significantly faster than [24] with
run-time of 7.1 seconds and [17] with run-time of 19 seconds.
In addition, the MEX implementation of our patch descriptor
processes 36,000 image patches in a second. Considering that
the edge map of a colonoscopy image after applying Gaussian
smoothing contains on average 20,000 edge pixels, our de-
scriptor can process each image in approximately 0.5 seconds.
By converting our Matlab-MEX implementation to C/C++
and employing parallel computing optimization, we expect a
significant increase in the speed of the suggested system.
Our CAD system with some modifications could also be used

for detecting polyps in capsule endoscopy images. In contrast to
optical colonoscopy, capsule endoscopy is not a live process so
the CAD system could be employed in an off-line fashion to
scan the images for polyps or other types of lesions in the gas-
trointestinal tracts. We will consider the application of our CAD
system to capsule endoscopy in our future work. Another use
case of the suggested CAD system would be to annotate stored
colonoscopy videos in a post-exam setting. Such a video an-
notation mechanism in conjunction with other objective quality
documentation systems [50], [51] can be used for more effec-
tive colonoscopy reimbursement.
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SUPPLEMENTARY MATERIAL

Input:
• A colonoscopy image I
• Trained random forest classifiers RFi|2i=1

Output:
• polyp probability

Detection process
{Step 1: Collect edges and normals}
E = {(ei, ni) |∠ni ∈ [0, π), i = 1, 2, ..., N}

{Step 2: Refine the edge map via classification}
for i = 1, 2, ..., N //for each edge
{Step 2.1: Extract a pair of patches}

//assuming two normals
{n1i ← ni, n

2
i ← −ni}

p1i oriented patch with n1i being the normal
p2i oriented patch with n2i being the normal

{Step 2.2: Extract features }
d1i ← F(p1i ), d2i ← F(p2i )

{Step 2.3: Classify edges}
{A. Generate mid-level features }
f1i ← RF1(d1i )
f2i ← RF1(d2i )
fi ← c(f1i , f

2
i ) //concatenation

{B. Fuse patch information}
S← RF2(fi) //1x3 array
if S[1] > 0.5

yi ← 1 , n∗i ← n1i //edge accepted
else if S[2] > 0.5

yi ← 2 , n∗i ← n2i //edge accepted
else

yi ← 0 //edge rejected
end if

end for
{Step 3: Localize polyps through voting}
{Step 3.1: Group edges}
V k = {ei|yi /∈ 0 ∧ kπ

4 <mod(∠n∗i , π)< (k+1)π
4 }

{Step 3.2: Generate the voting map}
for k = 0, 1, 2, 3

Mk =
∑

vi∈V k
Mvi(x, y)

end for

MVA← argmax
x,y

3∏
k=0

Mk //candidate location

{Step 3.3: Compute the polyp probability}
p(polyp|MVA) ← pr // see Fig. 11

Fig. S1: This pseudocode explains how the suggested polyp
detection system operates when a new test image is provided.

Input:
• A set of training images I = {I1, I2, ..., Im}
• Ground truth images G = {G1, G2, ..., Gm}

– Truth make up G(x, y) ∈ {1, 2, 3, 4, 5}
1: polyp, 2: vessel, 3: lumen, 4: specular reflection, 5: random

Output:
• Trained random forest classifiers RF1, RF2

Learning process
{Layer 1: Train the 1st classifier}

Step0: collect labeled edges
E={}//set of edges
L={}//set of labels
N={}//set of desired normals
for i=1...m //for each image

Ibin = edge(Ii)
E = E

⋃
{e |Ibin(ex, ey) = 1}

L = L
⋃
{l = Gi(ex, ey) |Ibin(ex, ey) = 1}

N = N
⋃
{~n∗x,y |Ibin(ex, ey) = 1}

//n?
i adjusted to point towards the ROI

end for
//Extract N1 oriented patches using n?i
P = {(pi, li) |li∈{1, 2, 3, 4, 5}, i = 1...N1}
Step1: Extract low-level features and
train the 1st random forest classifier
di ← F(pi) //low-level feature vector
{(di, li) |li∈{1, 2, 3, 4, 5}, i = 1...N1} =⇒ RF1

{Layer 2: Train the 2nd classification layer}
Step2: Collect N2 pairs of patches
{(ei, li, ni)|li∈{0, 1, 2}∧∠ni∈[0, π), i = 1...N2}
0: a non-polyp edge,
1: a polyp edge where ni points toward the polyp,
2: a polyp edge where -ni points toward the polyp

for i = 1...N2 //for each edge
//Assume two normals
{n1i ← ni, n

2
i ← −ni}

p1i oriented patch with n1i being the normal
p2i oriented patch with n2i being the normal
Step3: Extract features
d1i ← F(p1i ), d2i ← F(p2i )

//Apply the first classifier RF1

f1i ← RF1(d1i ), f
2
i ← RF1(d2i )

Step4: Concatenate features
fi ← c(f1i , f

2
i )

end for
Step5: Train the 2nd random forest classifier
{(fi, li)|li ∈ {0, 1, 2}, i = 1..., N2} =⇒ RF2

Fig. S2: This pseudocode explains how the suggested edge
classification pipeline is trained.
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SHAPE GENERATOR

Our stochastic shape model is to generate objects that
resemble the curvy heads of polyps. In our stochastic shape
model, a shape is parameterized as a curve Γ with the position
vector v:

Γ : Ω→ R2

Θ→ v(Θ) = [x(Θ), y(Θ)]T

where Θ = {θ, µr, σr, µa, σa}. In the above equation, x(Θ)
and y(Θ) are determined as follows:

x(Θ) = xC + r × a× cos(θ)

y(Θ) = yC + r × sin(θ) (10)

where [xC , yC ]T is the shape center, θ is the angle with respect
to the center, and radius r and aspect ratio a are drawn from
N(µr, σr) and N(µa, σa), respectively. Since this model does
not pose any constraint on the first and second derivatives of
the contours, the resultant shapes are not smooth. To overcome
this, we concatenate the x(Θ)s of the points on a contour to
produce the signal X , and the y(Θ)s to produce the signal
Y . We then apply 1D FFT on the generated signals, remove
the high frequency components, and reconstruct the signals
using the remaining low frequency coefficients, X̂ and Ŷ .
To compensate for the unwanted shrinking caused by the
smoothness process, we scale the smoothed shapes up to the
original size by the following linear transformation:

x(Θ) = xC + (x̂(Θ)− xC)

∑
iXi∑
i X̂i

y(Θ) = yC + (ŷ(Θ)− yC)

∑
i Yi∑
i Ŷi

CONSTRUCTING REGRESSION MODELS

To construct a regression model for a fixed K and σF , we
take the following steps:

1) We generate 3000 objects at three different scales cor-
responding to small, medium, and large polyps. To
do so, we use our shape generator model and choose
µr ∈ {20, 40, 60}, and set σr = 0.2µr, µa = 1, and
σa = 0.1.

2) We perform the voting scheme for each generated object
based on the selected K and σF . For each object, the
set of voters consists of all the edge pixels that form the
object contour. To initiate the voting process, each voter
must be assigned a voting direction. We first obtain the
edge direction for an edge pixel using ball tensor voting
and then determine its voting direction such that it points
towards inside the corresponding object.

3) We find the representative isocontour of each voting map
and then collect pairs of (dobji , disoi ) from the boundaries
of the objects and the representative isocontours.

4) We construct a regression model based on the collected
pairs of (dobji , disoi ).

Fig. S3: FROC curves of our system for different sizes of
patches. CVC-ColonDB is used for evaluation.

EFFECT OF PATCH SIZE

We have chosen patches of size 64x64 (32 pixels on each
side of the boundary), because they were suitable for capturing
the context in 512x512 colonoscopy frames..To investigate
how the size of patches influences the performance, we have
conduced new experiments based on 32x32 and 48x48 image
patches. The results are shown in Fig. S3. As seen, 32x32
patches are not large enough to capture sufficient discrimina-
tory features from the context, but this limitation is overcome
by increasing the size of image patches.
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Abstract. Computer-aided detection (CAD) can help colonoscopists
reduce their polyp miss-rate, but existing CAD systems are handicapped
by using either shape, texture, or temporal information for detecting
polyps, achieving limited sensitivity and specificity. To overcome this
limitation, our key contribution of this paper is to fuse all possible polyp
features by exploiting the strengths of each feature while minimizing its
weaknesses. Our new CAD system has two stages, where the first stage
builds on the robustness of shape features to reliably generate a set of
candidates with a high sensitivity, while the second stage utilizes the
high discriminative power of the computationally expensive features to
effectively reduce false positives. Specifically, we employ a unique edge
classifier and an original voting scheme to capture geometric features of
polyps in context and then harness the power of convolutional neural
networks in a novel score fusion approach to extract and combine shape,
color, texture, and temporal information of the candidates. Our experi-
mental results based on FROC curves and a new analysis of polyp detec-
tion latency demonstrate a superiority over the state-of-the-art where
our system yields a lower polyp detection latency and achieves a sig-
nificantly higher sensitivity while generating dramatically fewer false
positives. This performance improvement is attributed to our reliable
candidate generation and effective false positive reduction methods.

1 Introduction

Colon cancer most often develop from colonic polyps. However, polyp grow slowly
and it typically take years for polyps to develop into cancer, making colon cancer
amenable to prevention. Colonoscopy is the preferred procedure for preventing
colon cancer. The goal of colonoscopy is to find and remove polyps before turning
into cancer. Despite its demonstrated utility, colonoscopy is not a perfect proce-
dure. A recent clinical study [5] reports that a quarter of polyps are missed dur-
ing colonoscopy. Computer-aided polyp detection can help colonoscopists reduce
their polyp miss-rate, in particular, during long and back-to-back procedures
where fatigue and inattentiveness may result in miss detection of polyps.
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Fig. 1. Significant variation in visual characteristics of polyps. (a) Color and appear-
ance variation of the same polyp due to varying lighting conditions. (b) Texture
and shape variation among polyps. Note how the distance between the polyps and
colonoscopy camera determines the availability of polyp texture. (c) Other polyp-like
structures in the colonoscopic view (Color figure online).

However, designing a high-performance system for computer-aided polyp
detection is challenging: (1) Polyps appear differently in color, and even the
same polyp, as shown in Fig. 1(a), may look differently due to varying lighting
conditions. (2) Polyps have large inter- and intra-morphological variations. As
shown in Fig. 1(b), the shapes of polyps vary considerably from one to another.
The intra-shape variation of polyps is caused by various factors, including the
viewing angle of the camera and the spontaneous spasms of the colon. (3) Vis-
ibility of the texture on the surface of polyps is also varying due to biological
factors and distance between the polyps and the colonoscopy camera. This can
be seen in Fig. 1(b) where texture visibility decrease as the polyps distance from
the capturing camera. The significant variations among polyps suggest that there
is no single feature that performs the best for detecting all the polyps.

As a result, to achieve a reliable polyp detection system, it is critical to fuse
all possible features of polyps, including shapes, color, and texture. Each of these
features has strengths and weaknesses. Among these features, geometric shapes
are most robust because polyps, irrespective of their morphology and varying
levels of protrusion, have at least one curvilinear head at their boundaries. How-
ever, this property is not highly specific to polyps. This is shown in Fig. 1(c)
where non-polyp structures exhibit similar geometric characteristics to polyps.
Texture features have the weakness of limited availability; however, when visi-
ble, they can distinguish polyps from some non-polyp structures such as specular
spots, dirt, and fecal matter. In addition, temporal information is available in
colonoscopy and may be utilized to distinguish polyps from bubbles or other
artifacts that only briefly appear in colonoscopy videos.

Our key contribution of this paper is an idea to exploit the strengths of each
feature and minimize its weaknesses. To realize this idea, we have developed
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a new system for polyp detection with two stages. The first stage builds on the
robustness of shape features of polyps to reliably generate a set of candidate
detections with a high sensitivity, while the second stage utilizes the high dis-
criminative power of the computationally expensive features to effectively reduce
false positive detections. More specifically, we employ a unique edge classifier
coupled with a voting scheme to capture geometric features of polyps in con-
text and then harness the power of convolutional deep networks in a novel score
fusion approach to capture shape, color, texture, and temporal information of
the candidates. Our experimental results based on the largest annotated polyp
database demonstrate that our system achieves high sensitivity to polyps and
generates significantly less number of false positives compared to state-of-the-art.
This performance improvement is attributed to our reliable candidate generation
and effective false positive reduction methods.

2 Related Works

Automatic polyp detection in colonoscopy videos has been the subject of research
for over a decade. Early methods, e.g., [1,3] for detecting colonic polyps utilized
hand-crafted texture and color descriptors such as LBP and wavelet transform.
However, given large color variation among polyps and limited texture availabil-
ity on the surface of polyps (See Fig. 1), such methods could offer only a partial
solution. To avoid such limitations, more recent techniques have considered tem-
poral information [6] and shape features [2,7,9–11], reporting superior perfor-
mance over the early polyp detection systems. Despite significant advancements,
state-of-the-art polyp detection methods fail to achieve a clinically acceptable
performance. For instance, to achieve the polyp sensitivity of 50 %, the system
suggested by Wang et al. [11] generates 0.15 false positives per frame or approx-
imately 4 false positive per second. Similarly, the system proposed in [10], which
is evaluated on a significantly larger dataset, generates 0.10 false positives per
frame. Clearly, such systems that rely on a subset of polyp characteristics are
not clinically viable—a limitation that this paper aims to overcome.

3 Proposed Method

Our computer-aided polyp detection system is designed based on our algorithms
[7,8,10], consisting of 2 stages where the first stage utilizes geometric features
to reliably generate polyp candidates and the second stage employs a compre-
hensive set of deep features to effectively remove false positives. Figure 2 shows
a schematic overview of the suggested method.

3.1 Stage 1: Candidate Generation

Our unique polyp candidate generation method exploits the following two prop-
erties: (1) polyps have distinct appearance across their boundaries, (2) polyps,
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Fig. 2. Our system consists of 2 stages: candidate generation and classification. Given
a colonoscopy frame (A), we first obtain a crude set of edge pixels (B). We then refine
this edge map using a classification scheme where the goal is to remove as many non-
polyp boundary pixels as possible (C). The geometric features of the retained edges
are then captured through a voting scheme, generating a voting map whose maximum
indicates the location of a polyp candidate (D). In the second stage, a bounding box
is estimated for each generated candidate (E) and then a set of convolution neural
networks—each specialized in one type of features—are applied in the vicinity of the
candidate (F). Finally, the CNNs are aggregated to generate a confidence value (G) for
the given polyp candidate.

irrespective of their morphology and varying levels of protrusion, feature at least
one curvilinear head at their boundaries. We capture the first property with our
image characterization and edge classification schemes, and capture the second
property with our voting scheme.

Constructing EdgeMaps. Given a colonoscopy image, we use Canny’s method
to extract edges from each input channel. The extracted edges are then put
together in one edge map. Next, for each edge in the constructed edge map, we
determine edge orientation. The estimated orientations are later used for extract-
ing oriented patches around the edge pixels.

Image Characterization. Our patch descriptor begins with extracting an ori-
ented patch around each edge pixel. The patch is extracted so that the contain-
ing boundary is placed vertically in the middle of the patch. This representation
allows us to capture desired information across the edges independent of their
orientations. Our method then proceeds with forming 8×16 sub-patches all over
the extracted patch. Each sub-patch has 50 % overlap with the neighboring sub-
patches. For a compact representation, we compress each sub-patch into a 1D
signal S by averaging intensity values along each column. We then apply a 1D
discrete cosine transform (DCT) to the resulting signal:

Ck =
2
n

w(k)
n−1∑
i=0

S[i] cos(
2i + 1

2n
πk) (1)

where

w(k) = 1/
√

2, k = 0 and w(k) = 1, 1 ≤ k ≤ n − 1.
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With the DCT, the essential information of the intensity signal can be summa-
rized in a few coefficients. We discard the DC component C0 because the average
patch intensity is not a robust feature—it is affected by a constant change in
patch intensities. However, the next 3 DCT coefficients C1−C3 are more reliable
and provide interesting insight about the intensity signal. C1 measures whether
the average patch intensity along the horizontal axis is monotonically decreasing
(increasing) or not, C2 measures the similarity of the intensity signal against
a valley (ridge), and finally C3 checks for the existence of both a valley and a
ridge in the signal. The higher order coefficients C4−C15 may not be reliable for
feature extraction because of their susceptibility to noise and other degradation
factors in the images.

The selected DCT coefficients C1 − C3 are still undesirably proportional
to linear illumination scaling. We therefore apply a normalization treatment.
Mathematically,

Ci =
Ci√

C2
1 + C2

2 + C2
3

, i = 1, 2, 3.

Note that we use the norm of the selected coefficients for normalization rather
than the norm of entire DCT coefficients. By doing so, we can avoid the expensive
computation of all the DCT components. The final descriptor for a given patch
is obtained by concatenating the normalized coefficients selected from each sub-
patch.

The suggested patch descriptor has 4 advantages. First, our descriptor is
fast because compressing each sub-patch into a 1D signal eliminates the need for
expensive 2D DCT and that only a few DCT coefficients are computed from each
intensity signal. Second, due to the normalization treatment applied to the DCT
coefficients, our descriptor achieves invariance to linear illumination changes,
which is essential to deal with varying lighting conditions (see Fig. 1). Third,
our descriptor is rotation invariant because the patches are extracted along the
dominant orientation of the containing boundary. Fourth, our descriptor handles
small positional changes by selecting and averaging overlapping sub-patches in
both horizontal and vertical directions.

Edge Classification. Our classification scheme has 2 layers. In the first layer,
we learn a discriminative model to distinguish between the boundaries of the
structures of interest and the boundaries of other structures in colonoscopy
images. The structures of interest consists of polyps, vessels, lumen areas, and
specular reflections. Specifically, we collect a stratified set of N1 = 100, 000 ori-
ented patches around the boundaries of structures of interest and r andom struc-
tures in the training images, S1 = {(pi, yi)|yi ∈ {p, v, l, s, r}, i = 1, 2, ..., N1}.
Once patches are extracted, we train a five-class random forest classifier with
100 fully grown trees. The resulting probabilistic outputs can be viewed as the
similarities between the input patches and the predefined structures of inter-
est. Basically, the first layer receives low-level image features from our patch
descriptor and then produces mid-level semantic features.
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Fig. 3. (a) A pair of image patches {p1i , p2i } extracted from an edge pixel. The green and
red arrows show the two possible normal directions {n1

i , n
2
i } for a number of selected

edges on the displayed boundary. The normal directions are used for patch alignment.
(b) The suggested edge classification scheme given a test image. The edges that have
passed the classification stage are shown in green. The inferred normal directions are
visualized with the blue arrows for a subset of the retained edges (Color figure online).

In the second layer, we train a 3-class random forest classifier with 100 fully
grown trees. Specifically, we collect N2 = 100, 000 pairs of oriented patches, of
which half are randomly selected from the polyp boundaries and the rest are
selected from random non-polyp edge segments. For an edge pixel at angle θ,
one can obtain two oriented image patches {p1i , p

2
i } by interpolating the image

along the two possible normal directions {n1
i , n

2
i }. As shown in Fig. 3(a), for

an edge pixel on the boundary of a polyp, only one of the normal directions
points to the polyp region. Our classification scheme operates on each pair of
patches with two objectives: (1) to classify the underlying edge into polyp and
non-polyp categories, and (2) to determine the desired normal direction among
n1

i and n2
i such that it points towards the polyp location. Henceforth, we refer

to the desired normal direction as “voting direction”.
Once image pairs are collected, we order the patches {p1i , p

2
i } within each

pair according to the angles of their corresponding normal vectors, ∠n1
i <∠n2

i .
In this way, the patches are represented in a consistent order. Each pair of ordered
patches is then assigned a label yi ∈ {0, 1, 2}, where “0” indicates that the under-
lying edge does not lie on a polyp boundary, “1” indicates that the edge lies on
a polyp boundary and that n1

i is the voting direction, and “2” indicates that the
edge lies on a polyp boundary but n2

i shows the voting direction. Mathematically,
S2 = {(p1i , p

2
i , yi)|yi ∈ {0, 1, 2}, i = 1, 2, ..., N2}. To generate semantic features,

each pair of ordered patches undergoes the image characterization followed by
the first classification layer. The resulting mid-level features are then concate-
nated to form a feature vector fi. This process is repeated for N2 pairs of ordered
patches, resulting in a labeled feature set, {(fi, yi)|yi ∈ {0, 1, 2}, i = 1, 2, ..., N2},
which is needed to train the second classifier. We train a 3-class classifier to
learn both edge labels and the voting directions (embedded in yi). Figure 3(b)
illustrates how the suggested edge classification scheme operates given a test
image.

Candidate Localization. Our voting scheme is designed to generate polyp
candidates in regions surrounded by curvy boundaries. The rationale is such
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boundaries can represent the heads of polyps. In our voting scheme, each edge
that has passed the classification stage, casts a vote along its voting direction
(inferred by the edge classifier). The vote cast by the voter v at a receiver pixel
r = [x, y] is computed as

Mv(x, y)=

{
Cv exp(−‖ �vr‖2

σF
) cos(∠ �n∗ �vr), if ∠ �n∗ �vr < π/2

0, if ∠ �n∗ �vr ≥ π/2
(2)

where the exponential and cosinusoidal functions enable smooth vote propaga-
tion, which we will later use to estimate a bounding box around each generated
candidate. In Eq. 2, Cvi

is the classification confidence, �vr is the vector connect-
ing the voter and receiver, σF controls the size of the voting field, and ∠ �n∗ �vr is
the angle between the voting direction �n∗ and �vr. Figure 4(a) shows the voting
field for an edge pixel lying at 135 degree. As seen, due to the condition set on
∠ �n∗ �vr, the votes are cast only in the region pointed by the voting direction.

It is essential for our voting scheme to prevent vote accumulation in the
regions that are surrounded by low curvature boundaries. For this purpose, our
voting scheme first groups the voters into 4 categories according to their voting
directions, V k={vi|kπ

4 < mod(∠n∗
i , π)< (k+1)π

4 }, k = 0...3. Our voting scheme
then proceeds by accumulating votes of each category in a separate voting map.
To produce the final voting map, we multiply the accumulated votes generated
in each category. A polyp candidate is then generated where the final voting
map has the maximum vote accumulation (MV A). Mathematically,

MV A = arg max
x,y

3∏
k=0

∑
v∈V k

Mv(x, y). (3)

Comparing Fig. 4(b) and (c) clarifies how the suggested edge grouping mitigates
vote accumulation between parallel lines, assigning higher temperature to only
regions surrounded by curvy boundaries. Another important characteristic of
our voting scheme is the utilization of voting directions. As shown in Fig. 4(d),
casting votes along both possible normal directions can result in mislocalized
candidates; however, incorporating voting directions allows for more accurate
candidate localization (Fig. 4(e)).

3.2 Stage 2: Candidate Classification

Our candidate classification method begins with estimating a bounding box
around each polyp candidate followed by a novel score fusion framework based
on convolutional neural networks (CNNs) [4] to assign a confidence value to each
generated candidate.

Bounding Box Estimation. To measure the extent of the polyp region, we
estimate a narrow band around each candidate, so that it contains the voters
that have contributed to vote accumulation at the candidate location. In other
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Fig. 4. (a) The generated voting map for an edge pixel lying at 135 degree. (b) With-
out edge grouping, all the votes are accumulated in one voting map, which results
in undesirable vote accumulation between the parallel lines. (c) With the suggested
edge grouping, higher temperature is assigned to only within the curvy boundaries. (d)
Casting votes along both possible normal directions can result in a candidate placed
outside the polyp region. (e) Casting votes only along the inferred voting directions
results in a successful candidate localization. (f) A narrow band is used for estimating
a bounding box around candidates. (g) A synthetic shape and its corresponding voting
map. The isocontours and the corresponding representative isocontour are shown in
blue and white, respectively (Color figure online).

words, the desired narrow band will enclose the polyp boundary and thus can
be used to estimate a bounding box around the candidate location. As shown in
Fig. 4(f), the narrow band B consists of a set of radial lines �θ parameterized as
�θ : MV A + t[cos(θ), sin(θ)]T , t ∈ [tθ − δ

2 , tθ + δ
2 ], where δ is the bandwidth, and

tθ is the distance between the candidate location and the corresponding point
on the band skeleton at angle θ. Once the band is formed, the bounding box is
localized so that it fully contains the narrow band around the candidate location
(see Fig. 4(f)). The bounding box will be later used for data augmentation where
we extract patches in multiple scales around the polyp candidates.

To estimate the unknown δ and tθ for a given candidate, we use the isocon-
tours of the corresponding voting map. The isocontour Φc of the voting map V
is defined as Φc = {(x, y)|V (x, y) = c × M} where M denotes the maximum of
the voting map and c is a constant between 0 and 1. As shown in Fig. 4(g), the
isocontours of the voting map, particularly those located farther away from the
candidate, have the desirable feature of following the shape of the actual bound-
ary from which the votes have been cast at the candidate location. Therefore,
one can estimate the narrow band’s parameters from the isocontours such that
the band encloses the object’s boundary. However, in practice, the shape of far
isocontours are undesirably influenced by other nearby voters in the scene. We
therefore obtain the representative isocontour Φ̄ by computing the median shape
of the isocontours of the voting map (see Fig. 4(g)). We have experimented with
different sets of isocontours and found out that as long as their parameter c
is uniformly selected between 0 and 1, the resulting representative isocontour
serves the desired purpose.

Let di
iso denotes the distance between the ith point on the representative iso-

countour Φ̄ and the candidate location. We use di
iso to predict di

obj , the distance
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between the corresponding point on the object boundary and the candidate loca-
tion. For this purpose, we employ a second order polynomial regression model

di
obj = b0 + b1(di

iso) + b2(di
iso)

2, (4)

where b0, b1, and b2 are the regression coefficients that are estimated using a
least square approach. Once the model is constructed, we take the output of
the model dobj at angle θ with respect to MV A as tθ and the corresponding
prediction interval as the bandwidth δ.

Probability Assignment. We propose a score fusion framework based on con-
volutional neural networks (CNNs) that can learn and integrate color, texture,
shape, and temporal information of polyps in multiple scales for more accurate
candidate classification. We choose to use CNNs because of their superior per-
formance in major object detection challenges. The attractive feature of CNNs
is that they jointly learn a multi-scale set of image features and a discriminative
classifier during a supervised training process. While CNNs are known to learn
discriminate patterns from raw pixel values, it turns out that preprocessing and
careful selection of the input patches can have a significant impact on the per-
formance of the subsequent CNNs. Specifically, we have found out that partial
illumination invariance achieved by histogram equalizing the input patches sig-
nificantly improves the performance of the subsequent CNNs and that curse of
dimensionality caused by patches with more than 3 channels results in CNNs
with inferior performance.

Considering these observations, we propose a 3-way image presentation that
is motivated by the three major types of polyp features suggested in the liter-
ature: (1) for color and texture features, we collect histogram-equalized color
patches PC around each polyp candidate; (2) for temporal features, we form
3-channel patches PT by stacking histogram-equalized gray channel of the cur-
rent frame and that of the previous 2 frames; (3) for shape in context, we form
3-channel patches PS by stacking the gray channel of the current frame and the
corresponding refined edge channel and voting channel produced in the candi-
date generation stage (see Fig. 2).

We collect the three sets of patches PC , PT , and PS from candidate locations
in the training videos, label each individual patch depending on whether the
underlying candidate is a true or false positive, and then train a CNN for each
set of the patches. Figure 5(a) shows the test stage of the suggested score fusion
framework. Given a new polyp candidate, we collect the three sets of patches in
multiple scales and orientations around the candidate location, apply each of the
trained CNNs on the corresponding patches, and take the maximum response
for each CNN, resulting in three probabilistic scores. The final classification
confidence is computed by averaging the resulting three scores.
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Fig. 5. (a) The test stage of the suggested score fusion framework. (b) Network layout
used for training the deep convolution networks.

4 Experiments

For evaluation, we have used 40 short colonoscopy videos. We have randomly
halved the database at video level into the training set containing 3800 frames
with polyps and 15100 frames without polyps, and the test set containing 5700
frames with polyps and 13200 frames without polyps. Each colonoscopy frame
in our database comes with a binary ground truth image. For performance eval-
uation, we consider a detection as a true (false) positive if it falls inside (outside)
the white region of the ground truth image.

Our candidate generation stage yielded a sensitivity of 73.6 % and 0.8 false
positives/frame. For candidate classification, we used Krizhevsky’s GPU imple-
mentation [4] of CNNs. With data augmentation, we collected 400,000 32× 32
patches for PC , PT , and PS where half of the patches were extracted around false
positive candidates and the rest around true positive candidates. Specifically, for
a candidate with an N × N bounding box, we extracted patches at three scales
sN × sN with s ∈ {1, 1.2, 1.4} and then resized them to 32 × 32 patches. Fur-
thermore, we performed data augmentation [4] by extracting patches at multiple
orientations and translation in each given scale. We have used the layout shown
in Fig. 5(b) for all the CNNs used in this paper.

Figure 6(a) shows FROC analysis of the suggested system. As seen, our sys-
tem based on the suggested score fusion approach shows a relatively stable
performance over a wide range of voting fields. For comparison, we have also
reported the performance of our system based on individual CNNs trained using
color patches (PC), temporal patches (PT ), and shape in context patches (PS).
We have also experimented with the channel fusion approach where color, shape,
and temporal patches are stacked for each polyp candidate followed by training
one CNN for the resulting 9-channel training patches. To avoid clutter in the
figure, only their best performance curves obtained by σF = 70 are shown. As
seen in Fig. 6(a), the proposed score fusion framework yields the highest perfor-
mance, achieving 50 % sensitivity at 0.002 FPs/frame, outperforming [10] with
0.10 FPs/frame at the same sensitivity.

FROC analysis is widely used for evaluating computer-aided detection sys-
tems designed for static datasets such as CT scans and mammograms. However,
for temporal or sequence-based datasets such as colonoscopy videos, it has the
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(a) (b)

Fig. 6. (a) Analysis of FROC. (b) Analysis of polyp detection latency.

drawback of excluding the factor of time. While it is desirable for a polyp detec-
tion system to detect as many polyp instances as possible, it is also important
to measure how quickly a polyp is detected after it appears in the video. We
therefore employ a new performance curve [8] that measures the polyp detection
latency with respect to the number of false positives. Briefly, if t1 denotes the
arrival frame of the polyp, t2 denotes the frame in which the polyp is detected,
and fps is the frame rate of the video, the detection latency is then computed
as ΔT = (t2 − t1)/fps. As with FROC, we change a threshold on the detec-
tion confidences and then at each operating point measure the median polyp
detection latency of the test positive shots and the number of false positives in
the entire test set. As seen in Fig. 6(b), different variations of our system yield
significantly less number of false positives than our previous work [10] at nearly
all operating points.

On a desktop computer with a 2.4 GHz quad core Intel and an Nvidia GeForce
GTX 760 video card, our system processes each image at 2.65 s, which is signif-
icantly faster than [11] with run-time of 7.1 s and [2] with run-time of 19 s. We
should note that a very large fraction of the computation time (2.6 s) is caused
by the candidate generation stage and that the candidate classification based on
CNNs is extremely fast because CNNs are only applied to the candidate loca-
tion in each frame. We expect a significant speedup of our system using parallel
computing optimization.

5 Conclusion

We proposed a new computer-aided polyp detection system for colonoscopy
videos. Our system was based on context-aware shape features to generate a
set of candidates and convoluational neural networks to reduce the generated
false positives. We evaluated our system using the widely-used FROC analysis,
achieving 50 % sensitivity at 0.002 FPs/frame, outperforming state-of-the-art
systems [10,11], which generate 0.15 FPs/frame and 0.10 FPs/frame at 50 %
sensitivity, respectively. We also evaluated our system using a latency analysis,
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demonstrating a significantly lower polyp detection latency than [10] particularly
in low false positive rates.
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Abstract— Colonoscopy is the gold standard for colon
cancer screening though some polyps are still missed,
thus preventing early disease detection and treatment. Sev-
eral computational systems have been proposed to assist
polyp detection during colonoscopy but so far without
consistent evaluation. The lack of publicly available anno-
tated databases has made it difficult to compare methods
and to assess if they achieve performance levels accept-
able for clinical use. The Automatic Polyp Detection sub-
challenge, conducted as part of the Endoscopic Vision
Challenge (http://endovis.grand-challenge.org) at the inter-
national conference on Medical Image Computing and Com-
puter Assisted Intervention (MICCAI) in 2015, was an effort
to address this need. In this paper, we report the results of
this comparative evaluation of polyp detection methods, as
well as describe additional experiments to further explore
differences between methods. We define performance met-
rics and provide evaluation databases that allow compari-
son of multiple methodologies. Results show that convolu-
tional neural networks are the state of the art. Nevertheless,
it is also demonstrated that combining different methodolo-
gies can lead to an improved overall performance.

Index Terms— Endoscopic vision, polyp detection, hand-
crafted features, machine learning, validation framework.

I. INTRODUCTION

THIS paper introduces the results and main conclusions
of the MICCAI 2015 Sub-Challenge on Automatic Polyp

Detection in Colonoscopy, conducted as part of the Endoscopic
Vision Challenge (http://endovis.grand-challenge.org). More
precisely, we present a validation study comparing the perfor-
mance of different polyp detection methods covering different
methodologies proposed by participating teams, providing an
insight analysis of their detection yield. In this section, we
introduce both clinical and technical contexts.

A. Clinical Context
Colorectal cancer (CRC) is the third largest cause of cancer

deaths in the United States among men and women, and it is
expected to have resulted in about 49, 196 deaths in 2016 in the
USA [1]. CRC arises from adenomatous polyps (or adenomas),
that are growths of glandular tissue originating from the
colonic mucosa. Though adenomas are initially benign, they

0278-0062 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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might become malignant over time and spread to adjacent
and distant organs such as lymph nodes, liver or lungs, being
ultimately responsible for complications and death [2].

CRC prevention is first based on the detection of at-
risk patients: those with symptoms (such as hematochezia
and anemia), those with positive screening tests (such as
a fecal occult blood test or a fecal immunochemical test),
and those with a past history of adenoma or with a family
history of advanced adenoma or CRC. In these groups of
patients, a colonoscopy is proposed to detect polyps before
any malignant transformation or at an early cancer stage.
This stage refers to the most superficial colon layers, with no
deep invasion, and it is associated with a 5-year survival rate
over 90% [1], [3]. If any polyp found is characterized as a
likely adenoma, its removal should be considered to confirm
the diagnosis, to set its histological stage and to confirm its
complete removal, giving clinicians clues to determine the
need and timing of the next colonoscopy [4].

Though colonoscopy is the gold standard for colon screen-
ing, other alternatives, such as CT colonography [5] or wireless
capsule endoscopy (WCE) [6], are also used to search for
polyps. They are less invasive to patients and do not present
perforation risk. Though, as colonoscopy, they require bowel
preparation. Nevertheless in these cases, if a polyp is found,
a colonoscopy must be considered to remove the suspicious
lesion. These alternatives have specific limitations that may
affect the outcome of the screening. For instance, CT colonog-
raphy has a low small lesions (5 mm or less) detection rate
due to resolution constraints [7] and it implies using ionising
radiation. WCE allows to detect all kind of lesions but their
observation depends on whether they are recorded during the
progress of the camera through the gastrointestinal tract or
not. Moreover, its diagnostic yield is highly dependent on the
cleanliness of the colon (whereas colonoscopy has some in-
situ lavage capabilities). Last but not least, the analysis of the
information provided by WCE can be highly time-consuming,
as the recorded videos can last up to 8 hours [8].

Colonoscopy presents some drawbacks, polyp miss-rate
being the most important among these. Colonoscopy rarely
misses polyps bigger than 10 mm, but the miss-rate increases
significantly with smaller sized and/or flat polyps [9], [10].
It has also to be noted that colonoscopies are seldom
recorded, so a new procedure must be performed to revisit
explored areas.

The outcome of the colonoscopy exploration depends on:
1) bowel preparation [11]; 2) specific choice of endoscope and
video processor, affecting image quality and preventing the
use of certain image enhancing tools; 3) clinicians’ skills, as
both endoscopist’s experience and his/her actual concentration
during the intervention may influence the degree of procedure
completion (reaching the cecum or not) and the percentage
of the colon that has been explored [12], [13] and 4) patient-
specific issues, as due to colon movements and the appearance
of folds and angulations during the exploration, some parts of
the colon which may potentially present polyps may not be
reached [9]. Moreover, patients’ personal and family history
can increase the risk of having a polyp and, in this case, the
exploration should be even more thorough.

B. Technical Strategies to Improve Polyp Detection Rate
Apart from the continuous improvement of clinicians’ skills

through training programs and practice [14], technical efforts
are being undertaken to improve colonoscopy’s outcome.
We clustered them into two groups: improvement of devices
and the development of computational support systems.

Amongst the device improvements, the following should be
highlighted: 1) increase in image resolution and, consequently,
textural information; 2) the use of wide-angle cameras showing
more colon wall surface; 3) the development of zooming and
magnification techniques [15] and 4) the development of new
imaging methodologies such as autofluorescence imaging [16]
or virtual chromoendoscopy (Olympus’ Narrow Band
Imaging [17], Fujinon’s FICE [18] or Pentax’s i-Scan [19]).
This last group of techniques modify how the scene is
observed by improving the contrast of endoluminal scene
elements, which may help in lesion detection and also with
in-vivo lesion diagnosis due to the enhanced visualization
of lesion tissues [20]. These advances have fostered the
cooperation between clinicians and computer scientists in the
development and validation of computer-aided support systems
for colonoscopy, aimed to help clinicians in all stages of
CRC diagnosis. A significant part of this effort has been
focused on computer assisted polyp detection. As it is indi-
cated in [21], cooperation between technologists and clinicians
is essential to develop clinically useful solutions, with both
these groups understanding challenges and limitations in their
respective domains.

Automatic polyp detection in colonoscopy videos has been
an active research topic during the last 20 years and several
approaches have been proposed. We present a review of the
most relevant methods in Section II but, to the best of our
knowledge, none of them has been adopted for a routine
patient treatment. There might be several reasons behind this.
First of all, in order for a given method to be clinically
useful, it has to meet real time constraints; e.g. for videos
acquired at 25 frames per second (fps) the maximum time
available to process each image frame should be under 40ms.
Secondly, some of them are built from a theoretical model of
a polyp appearance [14], [22] and therefore limited to only
certain polyp morphologies, which may not translate to the
actual scene where polyp appearance varies greatly. Thirdly,
the majority of methods are mainly focused on the polyps
and they do not consider the presence of other elements such
as folds, blood vessels or the lumen that can affect methods’
performance [14]. Last but not least, some of these methods
have been only trained and tested on selected good quality still
image frames. The lack of temporal coherence and the great
variability in polyp appearance due to camera progression and
visibility conditions might impact their performance in the full
sequences analysis, as they might cause instability in their
response against similar stimuli.

Computational methods also have to deal with additional
colonoscopy-specific challenges. For instance, they should
consider the impact of image artifacts generated due to
scene illumination (specular highlights, overexposed regions)
or to specific configuration of the videoprocessor attached to
the colonoscope, which might overlay information over the
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scene view. These artifacts, apart from altering the view of
the scene, might not be stable within consecutive frames and
therefore methods should both compensate their impact on
the individual frame polyp detection and tracking in the full
sequence analysis. Additionally, though an effort is made to
ensure an adequate bowel preparation, some particles may
still appear which, in some cases, could lead to false detec-
tions when isolated or to occlusion leading to miss detection
or localization errors. As mentioned before, these methods
have to cope with a great degree of variability in polyp
appearance which depends on illumination conditions, camera
position and on clinician skills when progressing through the
colon. Finally, available methods have been typically validated
on small and restricted databases, under specific endoscope
device conditions (brand and resolution), in some cases even
covering only one specific polyp type, shape or morphol-
ogy hindering their actual performance in a more generic
setting.

C. Motivation of the Comparison Study

Unfortunately, the lack of a common validation framework,
which is a frequent problem in medical and endoscopy image
analysis [21], has limited the effectiveness of the comparison
between existing approaches, making it difficult to determine
which of them could have actual advantage in clinical use.
To cope with this, efforts have been made on publishing fully
annotated databases [14], [22] and on organizing challenges
as part of international conferences (ISBI, MICCAI), which
offer a basis to discuss validation strategies.

Considering this and taking inspiration from recent works
on quantitative comparative methods’ analysis in areas such
as laparoscopic 3D Surface Reconstruction [23] or liver seg-
mentation [24], we present in this paper a complete validation
study of polyp detection methods performed as part of the
2015 MICCAI sub-challenge on Automatic Polyp Detection.
This sub-challenge was organized jointly by three research
teams: 1) Computer Vision Center/Universitat Autònoma
de Barcelona and Hospital Clinic from Barcelona, Spain
(CVC-CLINIC); 2) ETIS Lab (ENSEA/CNRS/University of
Cergy-Pontoise) and Lariboisière Hospital-APHP at Paris,
France (ETIS-LARIB), and 3) Arizona State University and
Mayo Clinic, USA (ASU-Mayo).

The objective of this paper is to present a comparative study
of polyp detection methods under a newly proposed validation
framework. This validation framework was firstly introduced
as part of MICCAI 2015 Sub-Challenge on Automatic Polyp
Detection in Colonoscopy and we present in this paper the
results of the mentioned sub-challenge. Beyond this, we also
propose additional experiments to assess even more in-depth
the performance of an automatic polyp detection method.
These new experiments are focused on exploring the actual
clinical applicability of a given method by assessing up to
what extent they are affected by some of the technical and
clinical challenges reported in the literature or whether they
incorporate temporal coherence features or not. Finally we
also go beyond the individual analysis of methods and propose
combination strategies in order to study whether a combination
method may lead to improved individual performance.

The remainder of the paper is structured as follows:
In Section II we present the methods proposed by each of
the participating teams in the challenge, including them in
the context of existing published methods. In Section III we
describe the complete validation framework. Results from the
comparative study are presented in Section IV. Section V
provides an in-depth analysis of the results and discusses
some topics related to challenge organization. Finally, the
concluding remarks are drawn in Section VI.

II. AUTOMATIC POLYP DETECTION METHODS

A. Historical Review of Computational
Polyp Detection Methods

After analyzing approaches reported in the literature, we
propose to cluster methods into three groups: 1) hand-
crafted; 2) end-to-end learning and 3) hybrid approaches.
This taxonomy represents the different historical trends of
polyp detection methods, as in early 2000s, the majority
of the methods used a given texture descriptor to guide
a classification method but, subsequently, some researchers
decided to go for hand-crafted features, aiming at a real time
implementation. As technology evolved and the computational
capabilities increased, techniques such as neural networks that
were developed in the past and abandoned due to excessive
computational cost have now resurfaced.

Regarding hand-crafted methods, the majority are based
on exploiting low-level image processing methods to obtain
candidate polyp boundaries (using Hessian filters in the work
of Iwahori et al. [25], intensity valleys in the work of
Bernal et al. [14] or Hough transform in the work of
Silva et al. [26]) and then use resulting information to define
cues unique to polyps. For instance, the work of Zhu et al. [27]
analyzes curvatures of detected boundaries whereas the
method of Kang and Doraiswami [28] is focused on searching
ellipsoidal shapes typically associated with polyps. Finally, the
method of Hwang et al. [29] combines curvature analysis and
shape fitting in their strategy.

Concerning end-to-end learning, texture and color informa-
tion were formerly used as descriptors such as in the work of
Karkanis et al. [30] which proposed the use of color wavelets,
the work of Ameling et al. [31] that exploits the use of co-
ocurrence matrices or the work of Gross et al. [32], which
proposed the use of local binary patterns. Active learning
methodologies have also been introduced as in the work
of Angermann et al. [33] to reinforce the tradeoff between
performance and computation time. Some of the most recent
methods use deep learning tools to aid in polyp detection
tasks, as in the work of Park and Sargent [34] or in the
work of Ribeiro et al. [35]. In these very recent developments,
differences among methods are based on the selection of a
specific network architecture and databases used for training.

Finally, there are several hybrid methods which combine
both methodologies for polyp detection, such as in the works
of Tajbakhsh et al. [22], which combines edge detection and
feature extraction to boost detection accuracy, the work of
Bae and Yoon [36], that propose a system based on imbalanced
learning and discriminative feature learning; the work of
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Silva et al. [26], which uses hand-crafted features to filter non-
informative image regions and the work of Ševo et al. [37],
which combines edge density and convolutional networks.

As mentioned in Section I, the great majority of the
methods are tested on private databases though we can
observe that more recent publications such as the work of
Park and Sargent [34] or the work of Ribeiro et al. [35] have
started to use publicly available databases such as the ones
used in the MICCAI 2015 Sub-challenge on Automatic Polyp
Detection. Related to this, apart from new proposals, some
of the referenced methods have been adopted by participants,
such as the works of Bernal et al. [14], Silva et al. [26]
or the work of Tajbakhsh et al. [22]. We provide in the
next subsection a brief description of participating methods
highlighting their most relevant contributions to the field.
We grouped the methods following the taxonomy defined
earlier in this subsection.

B. MICCAI 2015 Polyp Detection
Sub-Challenge Methods

1) Hand-Crafted Features:

• CVC-CLINIC: This method [14] is based on a model
of appearance considering polyps as protruding surfaces,
being their boundaries defined from intensity valleys
detection. Their proposal includes a pre-preprocessing
stage to mitigate the impact of other valley-rich structures
(blood vessels, specular highlights). To build final energy
maps highlighting polyp presence, four different con-
straints (continuity, completeness, concavity, and robust-
ness against spurious structures) are imposed to candidate
boundaries to differentiate polyps from other structures.

2) End-to-End Learning:

• CUMED: The architecture of the proposed network con-
tains two sections including a downsampling path and an
upsampling path [38]. The former contains convolutional
and max-pooling layers while the latter contains convolu-
tional and upsampling layers, increasing the resolutions of
feature maps and output prediction masks. To alleviate the
problem of vanishing gradients and encourage the back-
propagation of gradient flow in deep neural networks,
the auxiliary classifiers are injected to train the network.
Furthermore, they can serve as regularization to reduce
over-fitting and improve the discriminative capability of
features in intermediate layers [39], [40].
The classification layer, after fusing multi-level contex-
tual information, produces the detection results. Network
training is formulated as a pixel-wise classification prob-
lem with respect to ground-truth masks. The highlight of
this approach is that it explores multi-level feature repre-
sentations with fully CNNs in an end-to-end way, taking
an image as input and directly providing the score map.
In addition, feature-rich hierarchies from a large scale
auxiliary dataset are transferred into the model to reduce
over-fitting and further boost detection performance [41].

• UNS-UCLAN: This method, inspired by reported
works [42]–[44], uses three CNNs trained at different
image scales, namely 1, 0.5, and 0.25, of the original

training images. For all the scales the CNNs use the
same architecture, but they are trained independently on
the RGB images at their corresponding scale. After this
initial training phase, the last fully connected part of each
CNN is removed and the outputs from the ’convolutional
part’ of all the three networks are fed as input to a single
Multi-Layer Perceptron (MLP) network. This additional
network is trained independently from the three CNNs.
In this approach CNNs are used as feature extraction
engines operating at different spatial scales, and the
MLP performs the classification based on these features.
The method’s output is the polyp incidence probabil-
ity map, which is then processed to locate dominant
probability peaks, as peaks locations and probability
values are returned as the final output of the sys-
tem. The training was performed exclusively on the
CVC-CLINIC database.

• OUS: This method is based on the popular AlexNet
model [44] for CNNs and its slight modification
CaffeNet, which is pre-trained on the ILSVRC 2012 [45]
dataset. Computations are achieved using the Caffe
library [46]. The original model is modified to take input
patches of size 96 × 96, and the kernel size of the
two first pooling layers is decreased from 3 to 2, while
the last pooling layer is removed. The output layer is
modified to give two outputs, polyp or non-polyp. In order
to increase the training examples, data augmentation is
performed in the form of random mirroring, rotation, up-
and down-scaling, cropping, and brightness adjustment.
Final polyp presence or absence was determined by
using a sliding-window strategy, with three scalings for
still frame analysis and two for full video sequence
analysis.

• SNU: This methodology proposes a two-step approach:
detection and localization. For both steps, CNNs were
used. Starting from GoogleNet (pre-trained on the Ima-
geNet dataset), a CNN fine-tuning was performed. Input
image is resized to 224x224 pixels prior training and data
augmentation (rotation and scaling) is also performed.
Training set images are augmented by using several
degrees of random rotation and scaling. Detection is con-
sidered as a simple binary classification task whereas, for
localization, CNN are applied on polyp-positive images
which are then segmented into a uniform-sized 8x8 grid
(64 grids per image). Then, for each image, one grid is
overlaid in black and then CNNs are applied thereafter
to perform the binary classification task. The 64 overlaid
grid images are then sorted by classification score to
calculate final polyps’ position.

3) Hybrid Approaches:

• PLS: The proposed full localization scheme consists of
two parts, detection and localization. Regarding detec-
tion, two sets of images, one containing polyps, and
the other without polyps, are used for training. Global
image features [47] are used as they are easy and fast
to calculate. Based on similarity scores between input
frame and training ones and results ranks, the detection
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TABLE I
SUMMARY OF INFORMATION FROM THE TEAMS THAT TOOK PART IN MICCAI 2015 CHALLENGE ON AUTOMATIC POLYP DETECTION

subsystem decides in real-time to which class (polyp or
no polyp) the input frame belongs to.
The localization scheme is implemented as a sequence of
preprocessing filters (RGB to YCbCr color space conver-
sion, removal of borders and sub-images, flare masking
and low-pass filtering) and uses the polyp’s physical
shape to find its exact position, approximating polyps
by elliptical shape regions presenting local features that
differentiate them from surrounding tissues. The final
decision regarding polyp location is taken by means of the
maximum values in the energy map computed using the
elliptical shape of the polyp’s usual appearance. Finally,
the method outputs four possible locations per frame.

• ETIS-LARIB: This method [26] is inspired by the
psycho-visual methodology used by clinicians when per-
forming an endoscopic examination. First, a detection of
the Regions of Interests (ROI) that may contain a polyp
is performed using shape and size image features. This
first pre-selection allows a first and fast scanning of the
image. Due to being circular/elliptical shapes associated
to polyps, a Hough transform was used for this first
filtering stage. Once ROIs are detected, a second analysis,
based on texture is achieved in order to remove those
ROIs with no actual polyp content. To achieve this, an ad-
hoc classifier based on a boosting-based learning process
using texture features computed from co-ocurrence matri-
ces (standard Haralick features) is proposed.

• ASU: This method [22] consists of two stages. In the first
stage, a set of polyp candidates is generated using geo-
metric features. Specifically, given a colonoscopy frame,

a crude set of edge pixels is first obtained. This edge map
is then refined using a classification and feature extraction
scheme [48]. The goal of the edge classification scheme is
to remove as many non-polyp boundary pixels as possible
from the initial edge map. The geometry of the retained
edges is then used in a voting scheme that localizes
polyps candidates as objects with curved boundaries
in the refined edge maps. The voting scheme further
estimates a bounding box for each generated candidate
based on the generated voting map. In the second stage,
an ensemble of CNNs -each of them specialized in one
type of features- is applied to each candidate bounding
box [49]. Finally, the outputs of the CNNs are averaged to
generate a confidence score for a given polyp candidate.

Table I shows a summary of the different methods partici-
pating at MICCAI 2015 Challenge on Automatic Polyp Detec-
tion. As each method was tested under different conditions,
computation times are given to complete the information on
the training and testing processes.

III. VALIDATION STUDY

We introduce in this section the complete validation study
proposed to assess and compare the performance of different
polyp detection methods.

A. Definitions and General Performance Metrics

We define Polyp detection as the capability of a given
method to determine polyp presence in a colonoscopy frame
(Polyp presence detection) and, once this is determined, it
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TABLE II
PERFORMANCE METRICS FOR POLYP DETECTION

is able to provide the location of the polyp within the image
(Polyp localization). Consequently, a good polyp detection
method should select images (video frames) containing polyps
and ignore all others and it should indicate the position of all
polyps present in an image. There are some terms defined
next which are key to set performance metrics. As we deal
with images from real patients examinations, we will find two
different cases: images with polyps and images without polyps.

In the first case, if detection output is within the polyp, the
method is said to be providing a True Positive (TP) or correct
alarm. It has to be noted that only one TP will be considered
per polyp, no matter how many detections fall within the
polyp. Any detection that falls outside the polyp is considered
a False Positive (FP) or false alarm. The absence of alarm
in images with a polyp is considered a False Negative (FN),
counting one per each polyp in the image that has not been
detected. Regarding images without polyps, we define as a
True Negative (TN) whenever the method does not provide
any output for this particular image. Any detection provided
for frames without a polyp counts as a False Positive (FP).
Considering these definitions, we propose the use of the frame-
based performance metrics presented in Table II.

B. Databases

Three different databases are used in the context of
the validation study presented in this paper. Two publicly
available databases were proposed for still frame analysis,
CVC-CLINIC and ETIS-LARIB. CVC-CLINIC [14] con-
tains 612 Standard Definition (SD) frames and comprises
31 different polyps from 31 sequences. ETIS-LARIB database
contains 196 High Definition (HD) frames and comprises
44 different polyps from 34 sequences. More details on these
databases are presented in Table IV. It has to be noted that all
images contain at least a polyp; both databases were built to
cover as many different polyp appearances as possible. Ground
truth consisting of a polyp mask was generated using the
same procedure for both databases: Images were annotated by
expert videoendoscopists from the corresponding associated
clinical institution. These experts (one per hospital) were
asked to outline the boundaries of any polyps present in the
image. These boundaries are used to generate a binary mask
representing the actual polyp area within the image, also to
be used for validation purposes. Examples from these two
databases are shown in the first two columns of Fig. 1.

Fig. 1. Illustration of the content of the CVC-CLINIC (first column),
ETIS-LARIB (second column) and ASU-Mayo Clinic (third column) data-
bases. The first column shows the original images with the corresponding
reference polyp contour shown as a blue line and the second contains
binary masks representing the ground truth.

The ASU-Mayo Clinic Colonoscopy Video c© Data-
base [22] comprises a set of short and long colonoscopy
videos, collected at the Department of Gastroenterology at
Mayo Clinic, Arizona. This database consists of 38 different,
fully annotated videos. The videos were selected to dis-
play maximum variation in colonoscopy procedures including
different resolutions and examination strategies (careful vs.
fast inspection) and also include frames containing biopsy
instruments or device information. Ground truth consisting
of binary masks (polyp frames) and black frames (non-polyp
frames) were created by volunteer students at Arizona State
University and have been reviewed and corrected by a trained
expert. Table III outlines information about the videos in
that database, including for each video duration in seconds
(Length), number of frames with polyps and the total num-
ber of frames (Polyp/Total) and the image resolution (Res).
An example from this database is shown in the third column
of Fig. 1.

C. Statistical Analysis

In order to account for statistically significant differences
in performance between methods, we propose first to perform
a Saphiro-Wilk test to find out whether the available data
follows a normal distribution or not. In the first case (normal
distribution) statistically significant differences across methods
will be assessed using an analysis of variance (ANOVA) to
detect differences regarding proposed metrics. In the second
case (no normal distribution), the Kruskal-Wallis test will be
used. All tests are done at a confidence level 1 − α = 0.95.

Considering the scope of the analysis presented in the paper,
the metric that will be used to compare different methods will
be F1-score, as it presents a balance between missed polyps
and false alarms. We perform a statistical study of this metric
only in videos with polyp (and potentially non-polyp) frames,
as the number of samples in the still-frame analysis is not big
enough to provide with statistically relevant conclusions and
the analysis in videos with no polyps would cause the F1 score
to be zero for all methods. We also perform statistical analysis
of detection latency but, for the sake of a proper statistical



BERNAL et al.: COMPARATIVE VALIDATION OF POLYP DETECTION METHODS IN VIDEO COLONOSCOPY 1237

TABLE III
CONTENT OF ASU-MAYO CLINIC COLONOSCOPY VIDEO c© DATABASE

TABLE IV
SUMMARY OF CONTENT OF STILL FRAME VALIDATION DATABASES.

SD STANDS FOR STANDARD DEFINITION, HD STANDS

FOR HIGH DEFINITION

comparison, this analysis is only done for those teams which
detect the polyp in all sequences.

D. MICCAI 2015 Sub-Challenge Validation Study

Two different scenarios were presented to the participants
of the challenge: (i) still frame analysis and (ii) full video
analysis. In the following, we present specific information of
the two presented scenarios, including validation databases and
performance metrics used in each of them.

1) Still Frame Analysis: The objective of this analysis was to
explore localization capabilities of a polyp detection method.
We aim to test how different methods perform in challenging
high-definition (HD), high-quality images showing great vari-
ability in polyp appearances. In this case, each image contains
at least one polyp and images have been selected in order to
have shots in which polyp appearance can be mistaken with
other elements of the scene (folds, vessels).

Two different databases were used in this study:
CVC-CLINIC is used for the training stage whereas
ETIS-LARIB is used during the testing stage. Participating
methods are compared using performance metrics exposed
in Table II. Additionally, in case a given method provides
confidence values a Precision-Recall curve is also provided
otherwise the operating point will represent its performance.

2) Video Analysis: In this second scenario we aim to explore
full polyp detection capabilities (localization and presence
detection) of a given method in full sequences from actual
colonoscopy procedures. In this case, polyp detection methods
have to deal, apart from appearance variability, with potential
polyp presence or absence in each image and, moreover,
with variability in image quality (blurring, bowel preparation).
Additionally, the videos in the second scenario may contain

images with extra-endoluminal elements such as device infor-
mation or surgical instruments. We also have to consider that,
as in real procedures, nor all the sequences or all the frames
contain a polyp.

The ASU-Mayo Clinic Colonoscopy Video c© Database
was used in this experiment. Apart from using common
performance metrics exposed in Table II, we proposed an
additional performance metric to assess whether how fast
a given detection method reacts to polyp presence. In this
context, Detection Latency (DL): DL = f irst_detection −
f irst_appearance represents the delay in frames between
the first appearance of the polyp in the video sequence
( f irst_appearance) and the first actual detection of the
polyp by a method ( f irst_detection). Considering this, a
clinically useful support system should have a DL close
to zero. Finally we also provide with Receiver Operating
Curves (ROC), though again, each method’s representation
depends on whether they provide detections’ confidence values
or not.

From a general organization perspective, all teams taking
part in the challenge were to use the same data for both
their training and testing stages. Participants were provided
with labelled training data on June 15th whereas unlabelled
testing data (still frames and full sequences) was released
on July 24th . In order to take part in the challenge, each
participating team was asked to provide a unique CSV file for
the analysis of the ETIS-LARIB database and/or one CSV file
for each of the 18 testing videos in the ASU-Mayo database,
depending on the sub-category the team would take part in.
Each row in the CSV file represents a detection candidate
region. Additionally, teams could also provide a confidence
value (value between 0 and 1) for the performance curves
drawing purposes, though this was not mandatory. Finally,
though 8 different teams took part in the challenge, not all
of them participated in all categories. ASU did not take part
in the still-frame analysis sub-category whereas ETIS-LARIB
and UNS-UCLAN did not take part in the video analysis one.

E. Additional Validation Experiments

1) Combination of Methods: In this study we propose to go
beyond the analysis of individual methods by providing quan-
titative elements on how potential combinations of some of the
presented approaches may lead to an improved performance.
Inspired by [50], we have studied two options of fusing the
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Fig. 2. Synthetical examples of different ways to perform a combination
of methods: (a) original image; (b) result of combination by union, and
(c) result of combination by saliency map creation. Outputs from different
teams are represented by different colors and shapes. In all images, the
contour of the polyp is represented as a blue curve.

methods, namely: 1) combination by union and 2) saliency
map creation.

The first one consists of adding, for a particular frame, the
outputs from all submitted methods. Saliency maps creation
proposes a combination of the output of the methods in order
to generate heat maps which aim to represent those areas in the
image where most of the methods coincide in their decision
regarding polyp location, following the methodology proposed
in [14]. We show in Fig. 2 a graphical comparison between
both strategies.

In this case, we treat the output of each method as a
’fixation’ or vote, and we create saliency maps from this set of
discrete fixations/votes. These fixation points are interpolated
by a Gaussian function to build up the final saliency map for
a given image as follows:
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where: x and y denote, respectively, the horizontal and vertical
positions of a given image pixel; x f

n and y f
n represent the hor-

izontal and vertical coordinates of a detection point (fixation);
N indicates the total number of detected points and finally
σs denotes the standard deviation of the Gaussian function,
determined as proposed in [14]. We determine the location of
the global maximum of the saliency map as the final output
of the combination of methods for a particular frame.

Two versions of saliency map creation have been imple-
mented: (saliency by union) calculates the saliency maps for
each frame considering all the methods that have provided any
output whereas (saliency voting) only calculates the saliency
maps if the majority of the teams in the studied combination
provide an output for the specific frame.

We provide results for each combination strategy in the two
challenge scenarios (still frame analysis and video analysis)
using the same frame-based performance metrics.

2) Impact of Image Challenges on Method’s
Performance: This experiment aims to study the impact
of some of the technical and clinical challenges reported in
Section I over the performance of a polyp detection method.
In order to study this, we proposed clinicians and computer
scientists from the contributing teams to define the main
image challenges present in colonoscopy frames that were to
be studied. The following ones were selected: 1) Presence of
overlay information in images (including patient information

TABLE V
BREAKDOWN OF CLINICAL AND TECHNICAL CHALLENGES

WITHIN ASU-MAYO TEST DATABASE

and camera shots); 2) Presence of specular highlights;
3) Appearance of overexposed regions; 4) Occurrence of
intestinal content (fecal particles, bubbles); 5) Presence of the
luminal region; 6) Lack of visibility of the whole polyp in the
image; 7) Presence of specular highlights within the polyp
region and 8) Images with low visibility (due to blurring or
excessive intestinal content). Fig. 3 shows examples of each
of the challenges.

A graphical user interface was built for experts to
label individually each frame from the testing videos of
ASU-Mayo Clinic Colonoscopy Video c© Database accord-
ing to the mentioned image challenges. For the sake of statis-
tical representativeness of the results, we did not perform the
same experiment for ETIS-LARIB database due to its smaller
size.As some of them may lead to subjective interpretations
we collected three different annotations per frame and the final
decision of a frame for each challenge was taken by majority
voting from the three experts. We present statistics about the
presence of the different image challenges in Table V.

We can observe how roughly half of the frames contain a
high number of specular highlights, some degree of intestinal
content and overexposed regions. Regarding polyp frames,
which equate to a 25% (4313) of the frames, we can observe
that about a 30% of them (1360) do not show completely the
polyp and that nearly all of them (3959) present specularities
within the polyp region. Finally, it is interesting to mention
that more than a 70% of the images were considered of low
visibility quality, which indicates how the methods are tested
in clear challenging conditions.

Once we have final annotations, we broke down the methods
performance analysis into two groups: frames with polyps
and frames without polyps. For the first case, we analyze
differences between performance for frames with and without
a specific image challenge regarding Precision, Recall and
F1-score whereas for the second the same kind of analysis
was done regarding Specificity score.

3) Impact of Polyp Morphology on Methods’
Performance: This experiment assesses whether methods’
performance depends on the polyp morphology. This analysis
examines if the methods perform differently for polyps with
different associated morphological type. Such analysis could
be useful to check whether existing methods are able to cope
with different morphologies as well as determining which
method to choose if a given morphology is predicted before
the examination. In order to study these potential differences in
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Fig. 3. Examples of the 8 technical and clinical challenges selected for the study: (a) Presence of overlay information; (b) High presence of specular
highlights; (c) Overexposed regions; (d) Intestinal content; (e) Luminal region; (f) Polyp cannot be seen completely in the image; (g) Specular
highlights within the polyp and (h) Impact of low visibility quality.

Fig. 4. Graphical representation of Paris classification of endoscopic
polyps. M stands for mucosa, MM for muscularis mucosa and SM for
submocusa.

performance, we propose to categorize each of the polyps that
appear in the testing databases using the Paris classification
criteria [51]. We show graphical examples of each type
in Fig. 4.

To account for differences in performance related to polyp
morphology we will use Precision, Recall and F1 scores as
defined in Table II. We also study differences in latency score
for the case of video sequences analysis.

4) Temporal Coherence on Method’s Response: One
capability that a computational method should have when
dealing with video analysis is temporal stability in its response.
That is, if a given method detects a polyp in a given frame
and considering normal camera movement, its output for the
following frame should provide a relevant detection. As we can
observe in the example shown in Fig. 5, none of the meth-
ods presented in the challenge incorporated per se temporal
stability capabilities in their methodologies but we consider
that it is important to assess up to what extent they provide
this kind of stability. Moreover, and as a consequence of this
stable temporal output, the method should provide with correct
detection in the majority of the frames in which the polyp
appears.

Fig. 5. Example of non-temporal coherence of polyp detection methods.
The example represents the performance of the CVC-CLINIC method for
the testing video 6 of ASU-Mayo Clinic Colonoscopy Video c© Database.
Image at the top shows ground polyp presence per frame (1 is polyp,
0 is no polyp) whereas bottom image shows detection score (1 correct,
0 no correct).

In order to study this we perform two evaluations. Regarding
detection stability in consecutive frames, for each testing video
from ASU-Mayo Clinic Colonoscopy Video c© Database
that contained a polyp, we extracted the pairs of consecutive
frames containing a polyp. We analysed methods’ output
for each pair of consecutive polyp frames and calculated as
metric the percentage of these pairs in which the method
provided correct output - detection inside the polyp mask -
for both frames. With respect of overall detection stability in a
sequence, we study Recall scores over the different sequences,
analyzing mean and standard deviation values to account for
intra and inter-sequence stability on detection performance.

5) Analysis of the Direct Output of the Methods: As men-
tioned in Section III-D, participating teams were only asked
to provide CSV files indicating detection output for the testing
frames (x and y position). This file is created from the output
of the different methods and we propose here to analyze this
actual output. As a first study, we asked the teams participating
in the still frame analysis challenge sub-category to provide
their actual output for each frame of ETIS-LARIB database.

In this context, we foresee the output of a method to be
interpreted as a likelihood or heat map, in which brighter
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Fig. 6. Performance curves: (a) Precision-Recall curve for the analysis of the ETIS-LARIB database and (b) Receiver Operating Characteristic
(ROC curves) for the analysis of the ASU-Mayo database. For the ROC curve, SNU operating point is calculated from the videos the team provided
results for. Methods are represented with a line in cases where the confidence value has been provided for each detection, otherwise the operating
point is used.

TABLE VI
SUMMARY OF STILL FRAME ANALYSIS RESULTS

(hotter) areas of the image represent parts of the image more
likely to contain a polyp. By analyzing these maps, we could
observe up to what extent method’s attention is only focused
on the polyp. To measure this, we propose Concentration
Ratio (CR) to compare these maps as proposed in [14]; CR
measures, for each frame, the rate of total energy in the image
(calculated as the sum of the each pixel’s value from the
energy map image) falling within the polyp. High CR values
are interpreted as a method actually focusing on the polyp,
being lower values related to sparser energy maps.

IV. RESULTS

In this section, we present the performance achieved by
each method in the several experimental studies proposed in
the paper, including those part of the MICCAI 2015 Sub-
Challenge on Automatic Polyp Detection in Colonoscopy.

A. MICCAI 2015 Challenge Results

We present main still frame analysis results in both Fig. 6 (a)
and in Table V. CUMED offers the best performance in all
metrics evaluated, being the team which detected the most

polyps (144) frames along with providing the lowest number
of false alarms (55). The comparison between the performance
of CNN-based approaches shows the importance of specific
network configuration, as relevant differences in both number
of detected polyp frames and false alarms can be observed -
for instance, the number of detected polyp frames falls into
a range between 131 (OUS) and 20 (SNU) -. Finally we
can observe a performance gap between end-to-end learning
and hybrid/hand-crafted methods, which provide less correct
detections and significantly more false alarms. It has to be
noted that as PLS provides four locations per image, the
number of false alarms for this method is inherently higher
than for other methods.

Considering full video analysis, the study shows superior
performance by CNN-based methods -see Table VII and in
Fig. 6 (b)-, with CUMED being the method providing a higher
number of polyp frames detected (3081). In this case, it has to
be noted that CUMED does not outperform all other methods
in all considered metrics, as ASU provides a better balance
between true and false alarms (higher F1-score) at the cost of
detecting less polyp frames (2636 vs. 3081).

We present in Table VII a complete breakdown of video
analysis results, dividing them into 3 groups according to
the degree of polyp presence in the sequences: 1) videos
containing frames with and without polyps; 2) videos con-
taining only frames with polyps, and 3) videos containing
non-polyp frames. In all cases, results again show a supe-
rior performance of CUMED in terms of total number of
polyp frames detected. Deepening the analysis, we observe a
decrease in the difference in performance observed in global
analysis between hand-crafted methods (CVC-CLINIC) and
CNN-based methods when videos with only polyp frames are
analyzed. This can be related to those methods being designed
to highlight polyp-like structures in the image (localization)
but not for determining specific polyp presence. The analysis
of sequences without polyp frames shows that PLS offers the
best performance, which is possibly due to the presence of a
specific polyp presence module in this approach.
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TABLE VII
SUMMARY OF THE MOST RELEVANT RESULTS REGARDING VIDEO SEQUENCE ANALYSIS

As mentioned in Section III-C, a statistical analysis is
performed to account for differences in performance between
methods. Results of the Saphiro-Wilk test over the F1 results
for each video and method indicates a normal data distribution
(p−value > 0.05). Considering this, we perform a subsequent
ANOVA analysis and multicomparison test to compare the
different methods. The ANOVA test detects significant differ-
ences across F1 values (p − value = 5.4e−10), which are
explored in the multicomparison test shown in Fig. 8. Results
of this test show the superior performance of ASU, providing

CUMED with a comparable performance different from the
rest in a statistically significant way. CUMED and OUS also
show performances comparable to each other. Finally CVC,
PLS, and SNU also present comparable performances.

We present in Fig. 7 detection latency results. We can
observe how there are only two teams (ASU and CUMED)
which present latency scores for all the videos. We perform a
statistical analysis to account for the differences between them.
The result of the Saphiro-Wilk test indicates a non-normal
data distribution (p − value < 0.05) and, consequently, the
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Fig. 7. Detection latency for polyp-containing videos.

Fig. 8. Multicomparison test for the analysis of the F1 score in videos
showing frames with and without polyps. Each method is represented
as a horizontal line whose center is located in corresponding method’s
mean F1 score and whose width corresponds to the variance calculated
according anova1 fit model. The best ranked group is represented by a
blue horizontal line, comparable methods are shown in grey, and methods
that are different in a statistically significant way are shown in red.

Kruskal-Wallis test is performed to account for statistically
significant differences. In this case the test confirms the
null hypothesis that both data samples come from the same
distribution p−value = 0.76, which can be observed in Fig.8.
Concerning the rest of the methods, we can observe that they
do not detect the polyps in all the videos which is also a cause
of the difference in performances shown in Table VII.

B. Additional Validation Experiments

1) Combination of Methods: We have included in Table VI
and in Table VII the best performance achieved after applying
each of the proposed method combination strategies. The
most important though logical conclusion extracted is that
a combination of methods leads to better detection results.
As expected, any combination of methods leads to an increase
of the total number of detected polyps. This shows that
different methods detect different polyps and that even those
with lower performance can contribute positively to the overall
detection.

We can observe in Fig. 9 (d-f) that if we do not include
all teams in the combination, the number of correct polyp
frame detections could be affected. We can also observe in
Fig. 9 (a-c) that the combination of the two best methods in

Fig. 9. Examples of the benefits of using a saliency-map-based
approach. The first row shows the impact of combining the two best
methods that surpass their individual performances: (a) original image;
(b) saliency map with the position of detection points superimposed (best
method, CUMED); (c) saliency map with the position of detection points
superimposed (two best method, CUMED and OUS). The second row
shows the positive impact of the worst performing method: (d) original
image; (e) saliency map with the position of detection points superim-
posed (all method); (f) saliency map with the position of detection points
superimposed (all method but SNU). The polyp contour is represented
in blue. Each method is represented by a different color and shape.

each category surpasses the individual methods’ performance,
which indicates the potential of saliency map methods to build
up more reliable systems. It is clear that the combination by
union strategy increases the total number of detected polyp
frames at the cost of vastly increasing the number of false
alarms and, consequently, other strategies should be explored
to achieve a clinically useful system.

Considering this, we observe that the use of saliency maps
leads to a better balance between correct and false alarms.
Regarding the two saliency-map sub-strategies, the voting
strategy leads to a slightly better performance for the case
of still frame analysis, specifically observed in the reduction
of FP. This can be explained as being due to those poorly
performing methods providing outputs for almost all frames.
Once their contribution is not considered as majority is not
achieved for a particular frame, these false alarms vanish.

Taking into account these results, if we consider a potential
combination of methods as the solution for polyp detection,
we would propose saliency maps with a voting sub-strategy
as the strategy that leads to a better compromise between
correct detections and false alarms, though other potential



BERNAL et al.: COMPARATIVE VALIDATION OF POLYP DETECTION METHODS IN VIDEO COLONOSCOPY 1243

TABLE VIII
IMPACT OF CLINICAL AND TECHNICAL CHALLENGES ON INDIVIDUAL METHODS’ PERFORMANCE

combinations can be explored. For instance, we can think of
a system which also includes the specific detection modules
that some approaches have presented here (PLS, SNU), with
polyp localization within a given image being then obtained
using CNN-based approaches (CUMED, OUS).

2) Impact of Image Challenges on Individual
Methods’ Performance: We present in Table VIII a summary
of the results of the experiment assessing the impact of several
image challenges on individual methods’ performance. With
respect to polyp frames, the first conclusion to be extracted
is that low visibility images and the presence of specular
highlights within the polyp affect all methods in the same
way. We interpret the impact of image quality as being
both mucosa wall and its elements, such as polyps, better
visually defined in good visibility images hence helping in
polyp detection. We associate the positive impact of specular
highlights inside the polyp to polyps appearing commonly as
protruding elements in the scene and, as a consequence of
this, specularities appear in their surface as their reflect light
back to the camera [52].

There are some image challenges that generally seem to
make polyp frames detection difficult such as the presence of
overlay information and overexposed regions, with the latter
being more prevalent in the explored images. The clear view
of the luminal region also negatively affects detection capabil-
ities, which we interpret as result of lumen presenting strong
boundaries and contrast in comparison with the mucosa, which
is a feature that polyps also exhibit. Surprisingly, the presence
of intestinal content affects positively Recall and F1-score;
this could be explained by the fact that this image challenge
appears clearly different from polyps (weak contours, different
color). Finally, the degree of completeness of the polyp seems

to present a low impact on the performance of the methods,
specially regarding F1-score.

Regarding non-polyp frames, we can observe that the pres-
ence of overlay information and overexposed regions helps
methods to discard frames without a polyp. Intestinal content
leads to more false alarms, as does the presence of the luminal
region and the presence of specular highlights; the three of
them may falsely indicate the presence of a polyp, as the may
also present contrast to mucosa or an indication of protrudness.
We can also observe how methods tend to provide a higher
number of false alarms for good quality images, which we
interpret as a result of structures likely to be confused with
polyps being better visually defined.

With respect to individual methods, we observe that those
including boundary information (ASU, CVC-CLINIC and
SNU) in their methodologies are specially damaged by the
presence of structures with strong boundaries such as lumen
or overlay information. End-to-end learning approaches are
less affected in non-polyp frames analysis and they benefit
from the presence of specular highlights in polyp frames.

3) Impact of Polyp Morphology on Methods’
Performance: We present in Table X and in Table IX
results of the study on the impact on polyp morphology on
method’s performance. It has to be noted that we only provide
results for the morphologies that appear in each particular
database, as described in Section III. We can observe that
for both still frames and video sequences analysis, methods’
performance do depend on polyp morphology. With respect
to still frame analysis, we can observe that Recall scores
are higher for sessile polyps (including sub-types 0-ISp and
0-IIa+Is) than for those less elevated (including flat) ones.
We associate this to appearing sessile polyps more different to
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TABLE IX
IMPACT OF POLYP MORPHOLOGY IN METHODS’ PERFORMANCE:

VIDEO SEQUENCE ANALYSIS. ONLY FRAMES CONTAINING

A POLYP ARE CONSIDERED FOR METRICS CALCULATION

the mucosa and hence attracting the attention of the different
methods. We can also observe how CVC-CLINIC and
ETIS-LARIB, despite offering worse overall performance,
are able to detect all kind of polyps though they obtain worse
Precision scores.

Concerning video sequences, differences regarding degree
of polyp elevation follow the same trend; in this case we
can observe big differences in Recall for all methods but, in
this case, Precision is not greatly affected but for the case
of CVC-CLINIC, which is logical due to its big dependence
on boundary presence to guide polyp detection; boundaries
between mucosa and the polyp are less distinguishable for the
case of slightly elevated polyps. Finally, this positive increase
in Recall score associated to sessile polyps also has an impact
in latency score; all teams achieve smaller latency scores for
those videos containing polyps of this morphological type
(videos 2, 6, 8 and 9) in Fig. 7.

4) Temporal Coherence on Method’s Response: We
present results of our temporal coherence study on Table XI(a).
For both consecutive frame and within sequence detection
stability, we can observe that results follow the same trend than
the analysis of individual frames, being CUMED and ASU the
teams which present a higher degree of temporal coherence,
despite none of them including temporal information as part
of their methodology. We can also observe how CUMED and
ASU are able to correctly detect polyp frames in more than
half of the polyp frames that each sequence contain, which
can be associated to them being more capable to cope with
polyp appearance variability within a same sequence.

5) Analysis of the Direct Output of the Methods: We present
mean and standard deviation values of CR in Table XI(b). As
we can observe, CUMED achieves the higher mean CR value
across all frames from ETIS-LARIB database, concentrating
around half of the total energy of the image inside the polyp. It
has to be noted that, in this case, differences between methods
can be associated to several reasons. First of all, it is clear
that methods detecting correctly more polyps will be prone
to concentrate more energy inside them hence the superior
performance of CUMED, which was the best performing team
in still frame analysis. Second, we also have to consider how
the actual output of the method looks like, as it can have an
impact in the specific metric considered.

We observe in Fig. 10 how some methods do not provide
probabilistic energy maps but binary masks approximating
the polyp region. Due to these regions having pre-determined
shapes, two problems may appear. First, it is highly unlikely

Fig. 10. Comparison of energy maps provided by each method:
(a) original image (b) CUMED (c) CVC-CLINIC (d) PLS (e) UNS-UCLAN
(f) ETIS-LARIB (g) OUS,s and (h) SNU. In each of the images, a green
line represents the reference polyp mask.

that actual polyps fit those shapes, so that any pixel-wise
metric value can be damaged by the shape choice. Second,
if methods’ evaluation is based on the calculation of detection
scores from single-position values and this position is calcu-
lated as the centroid of the pre-determined shape in case of
large regions partially covering the polyp, it may happen that
the detection position falls outside the polyp when in fact part
of the polyp region was covered by method’s output.

Consequently, we think it is not fair to include those meth-
ods (ETIS-LARIB, OUS and SNU) in a CR-based comparison.
We did statistically compare the different energy map-based
methods. Preliminary results shown in Fig. 11 indicate again
a superior performance of CUMED over the rest. Regarding
the statistical significance of the differences, the Saphiro-Wilk
test over CR values indicates a normal distribution of data.
Therefore ANOVA and multicomparison tests are performed to
study potential differences across methods. The ANOVA test
detects significant differences across CR values (p − value =
2.51e−61), which are explored in the multicomparison test
shown in Fig. 11. CUMED’s performance is statistically differ-
ent from the rest of the approaches, which present comparable
performances between them.

V. DISCUSSION

A. Impact of the Methodology Used on Method’s
Performance

The main result of this comparative study is that methods
including some degree of machine learning outperform classic
hand-crafted methods, specially regarding specificity scores
in non-polyp videos. This correlates with the trend actually
observed on computer vision research; methods traditionally
were hybrid, using hand-crafted features and machine learning
to classify a given input image according to the specific
problem to solve. There is an extensive amount of hand-crafted
features defined within the computer vision community, cover-
ing from general ones such as HOG or SIFT features to others
more domain-specific, such as the ones presented by CVC-
Clinic team. Designing hand-crafted features to solve specific
problems can be complicated and highly time consuming,
as well as limiting the widespread use of a new developed
technology.
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TABLE X
IMPACT OF POLYP MORPHOLOGY IN METHODS’ PERFORMANCE: STILL FRAME ANALYSIS

TABLE XI
TEMPORAL COHERENCE AND CONCENTRATION RATIO RESULTS. FOR

EACH METHOD, MEAN AND STANDARD DEVIATION VALUES OF

CORRESPONDING METRIC ARE PROVIDED. (a) TEMPORAL

COHERENCE. (b) CONCENTRATION RATIO

Fig. 11. The multicomparison test for the analysis of the CR score in the
ETIS-LARIB database. Each method is represented as a horizontal line
centered in corresponding method’s mean CR score and whose width
corresponds to the variance calculated according anova1 fit model. The
best ranked group is represented by a blue line, comparable methods are
shown in grey, and statistically significant different methods are shown
in red.

CNNs allow to learn jointly problem-specific features and
the classifier to differentiate among classes. Their great power
comes from the ability of learning problem-specific features
in an increasing depth of complexity and abstraction. As
it has been shown in this paper, we can observe a supe-
rior performance of CNN-based approaches over hand-crafted
methods. We can also observe differences in performance
between CNN-based methods which shows how obtaining
good performance of these networks depends strongly on
defining the proper architecture and having quality data to
feed the network. Regarding the design of the network, there
are several details to take into account which go from pure
architecture decisions (number of layers, number and size of

the filters of each layer or activation functions) to how the
training is done (choice of optimization method, setting a
learning rate, data preprocessing). A proper selection of these
parameters may lead to a boost in performance achieved.

Apart from differences related to parameter tuning, we
can also observe that one important difference between
CNN-based proposals rely on the type of data used to define
the network. CUMED uses only colonoscopy data whereas
OUS and SNU networks are pre-trained over general image
databases. CNNs are structured in layers and each of them
captures a different kind of features from the data; first layers
capture basic image features such as boundaries whereas
deeper ones capture more meaningful and abstract features
built over the previous ones. Considering this, features learnt
on the first layers might work well in several domains but
those learnt in the last layers are more application dependent.
One big requirement to use CNNs is to have a large amount of
labelled data that may not be available for the case of medical
imaging analysis. One widespread solution (used in SNU
methodology) is to train the network on a very big database
such as ImageNet (with over 106 images and 103 classes)
and then fine tune the network to adapt for a more specific
domain. The problem relies on ImageNet containing images
potentially very different that the ones that the polyp detection
system will have to deal with and, as results show, this may
limit the use of those pre-trained networks. In this sense, we
can observe how methods using colonoscopy data from end
to end (CUMED) obtain better performance than those trained
in general datasets such as OUS or SNU, which indicate that
efforts should be made to build up domain-specific networks
in order to obtained desired performance levels.

Concerning a general comparison among methods regard-
less their methodology, we can also observe from Table VII
that recall scores improve if we only consider frames with
polyps. As non-polyp frames are included in the study, per-
formance of hand-crafted and some of the hybrid methods
decrease with respect to all metrics. We explain this as being
due to some of the methods being specifically tuned for polyp-
like structures detection, but not on specific polyp presence or
absence; this can be observed in the high number of false
positives that these approaches provide as they seem to find
these polyp-like structures in frames without a polyp. We link
this to non-polyp frames containing structures which guide
polyp detection methods, such as, boundary information which
also appears associated in other endoluminal structures such
as folds or vessels. We also observe strong differences in the
performance of hand-crafted methods when dealing with polyp
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frames in the two proposed scenarios (still frames and videos).
This could be related to the fact that the ETIS-LARIB database
presents a high number of lateral polyp views, deviating from
the model of appearance which the hand-crafted method is
based on [14].

B. Impact of Clinical and Technical Image
Challenges on Method’s Performance

We have presented in this paper a preliminary study on
whether image challenges defined and reported by clinicians
and technicians do impact the performance of an automatic
polyp detection method. Results exposed in Table VIII show
that all of them, in a certain degree, should be tackled in
order the automatic system to efficiently assist clinicians
during the procedure. The most straightforward conclusion
from this experiment is that image quality matters, as meth-
ods’ performance decrease when only bad quality images
are considered. The presence of extra-endoluminal structures
such as overlay information or overexposed regions do also
affect negatively the performance of automatic methods. This
indicates that efforts should be made during the exploration
in order a computational support system to efficiently assist
clinicians. We can also observe that results do improve if
luminal region is not present in the image; this correlates with
actual exploration guidelines in which a thorough inspection of
the mucosa is prescribed in order to efficiently detect polyps.

It is also interesting to observe how there are some cases
in that image challenges considered for both technical and
clinical domains do not suppose an actual technical challenge.
For instance, we would expect that the presence of intestinal
content or the observation of specular highlights over the
polyp would impact negatively the performance of an auto-
matic method; results show that studied methods are indeed
positively affected by their presence. We associate this to these
image challenges appearing clearly different from polyps.

Moreover, and also related to this, there are some image
challenges which may provide unexpected results and which
would need to be better defined to avoid potential subjectivity.
Though we have gathered three observations per frame to
mitigate this, some of the image challenges should be defined
appropriately to avoid discrepancies between observers. For
instance, the presence of intestinal content, image quality
or, specially, the high specular highlights presence should be
redefined as, for the former, we should also consider its size
and type (solid, bubbles) and, for the latter, we may consider
not only the number but their size and position in the image.

Apart from the image challenge experiment, we have also
performed another one to assess the impact of polyp mor-
phology on methods’ performance. Even considering that this
experiment is limited to the actual morphologies that the
databases contain, differences can already be observed in a
way such methods obtain better performance as the polyp
protrudes more from the mucosa. With respect to polyps with
flat morphology cited by clinicians as the most difficult ones
to the detect [9], [10] we observe, for the case of still frames
analysis in which they are present, that there are methods that
are already able to detect them, despite its low presence in
training and testing databases.

TABLE XII
SUMMARY OF INDIVIDUAL METHOD’S PERFORMANCE. FOR LATENCY

AND TEMPORAL COHERENCE MEAN AND STANDARD DEVIATION

VALUES FROM THE ANALYSIS OF THE 9 VIDEOS

WITH POLYPS ARE PROVIDED

C. Towards Clinical Applicability

One of the objectives of the challenge and, consequently, of
this paper, was to assess if any of the participating methods is
close to clinical applicability. In order to assess this, we have
proposed several studies to observe certain features that a given
clinically applicable computational polyp detection method
should have. The main feature that a clinically applicable
system should have is that it should detect all polyps regardless
their appearance (high detection rate (DR), measured as the
percentage of polyps detected in at least one frame out of the
total of polyps present in the testing videos). This detection
should also be fast enough to be of an actual help; speed here
is not only considered in terms of computation time but also in
response to a stimuli as a computational method should react
to polyp presence as soon as it appears in the image (associated
to a low latency score). The actual response of a given
method should be stable over time (high temporal coherence)
in order to provide an smooth assistance to clinicians in polyp
search. Finally, and considering the scope of application of
the methods, the number of false alarms should be kept low
(high F1 score associated to an also high Recall value) as
the contrary would suppose indicating the clinicians to further
explore uninteresting regions of the image.

Considering these criteria, we present in Table XII a sum-
mary of the main results presented in this paper for the video
analysis challenge. Columns are ordered according to the,
under our point of view, relevance of the specific criteria. As
it can be seen, there are only two methods (CUMED, ASU)
that may be actually considered for a potential clinical use
as they do detect all polyps. Concerning the rest of criteria,
both do perform similarly: ASU presents a lower latency
which could be compensated by CUMED’s higher temporal
coherence degree. Concerning frame-based metrics we can
observe that ASU leads to a better balance between true and
false alarms though CUMED detects polyps in more frames.

It has to be noted that we have not included in Table XII
information regarding computation time for comparison pur-
poses as they have not been tested under the same config-
uration and, consequently, provided times may vary in an
actual final deployed system. Nevertheless, a clinically useful
method should operate under real-time constraints. Consider-
ing that videos are recorded on 25 or 30 frames per second,
processing of a new frame should not take more than 40 ms
(33 ms for NTSC systems) in order not to suppose a delay
in overall procedure time. All methods studied in this paper
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have computation times higher than these threshold values and,
consequently, do not comply with real-time constraints though
the processing of all frames might not be needed considering
due to the small variation between consecutive frames due to
usual smooth camera movement.

D. Possible Improvements in Validation Framework

During the analysis of the performance of each of the
methods, we have discovered several aspects to be considered
for future iterations of this study.

The first one deals with the variability of the image quality
provided in the training and testing stages. In this study, the
databases used for validation come from three different sources
presenting differences in image size or acquisition system, as
we have source data from both OLYMPUS and PENTAX
devices. This was done on purpose, as it is impossible to
predict under which specific scenario a given system can be
potentially used, as there is no standard regarding resolution
or manufacturer and a given method should perform similarly
regardless of the specific conditions. But it is true that these
variabilities may have affected the performance of the different
methods, as training was done using images with resolutions
different from the ones used for testing. These differences in
resolution can imply to have a greater level of texture detail
which can impact the performance of systems trained with
SD images (i.e. edge detection could be greatly affected by
the presence of small texture details inside the polyp).

Also related to database content, and after observing that
polyp morphology can impact methods’ performance, an effort
could also be made on enlarging the databases to cover those
types that are not currently present. It is important to mention
that performance of learning-based approaches for certain
morphologies could be affected by the lack of frames of this
particular type in the training set. In our experiment, this only
happens for still frames analysis as CVC-CLINIC database
does not contain polyps of types 0-IIa+c and 0-IIa+Is which
are indeed present in ETIS-LARIB database. Nevertheless it
has to be noted that these types are only present in 12 frames
out of the 196 frames of the database and, consequently,
global performance should not be greatly affected by this
issue. Finally, not all types are represented in the database
(for instance, proposed databases have no examples of types
0-Ip, 0-IIc or 0-III); it would surely be helpful to study how
computational methods deal with those polyp types reported
as the ones with higher associated miss-rate [9], [10].

The second are of improvement deals with how actual
results are calculated. The majority of results presented in
this paper have been calculated from the CSV files provided
by participants in the challenge. Though they are useful to
represent the actual performance of the method, we think it is
also necessary to analyze how these files are generated (the
actual output of the method they come from) in order to have
a deep understanding on how a given method performs. In this
sense, we proposed a preliminary study comparing the amount
of actual image energy that is kept inside the polyp. As it
was shown in Fig. 10, there are big differences in how the
actual output of the methods is calculated, inherent in each
teams’ methodology. Therefore, if we wanted to present a fair

comparison between methods over their direct output, specific
guidelines should be given to participants in order to gather
comparable data.

Finally, we think that Precision-Recall and ROC curves
should be used for methods’ comparison as well. In order to
provide these curves for all teams, confidence values should
have been provided; in this case, only one team per sub-
category (UNS-UCLAN in still-frame analysis and ASU-Mayo
for full video analysis) provided this information whereas the
rest only provided what we assume are results obtained using
the best configuration of each particular method. Nevertheless,
we have presented both curves in Fig. 6 along with quantitative
data in both Table VI and Table VII.

VI. CONCLUSIONS

We present in this paper a complete validation study com-
paring the performance of different polyp detection methods.
Eight different teams took part in this challenge, ranging from
methodologies based on hand-crafted methods to trending
techniques such as CNNs. We propose the use of uniform
performance metrics and common, publicly available, fully
annotated databases to objectively assess their performance.

The analysis of the results obtained by each method shows
a superior performance by methods using machine learning as
part of their methodologies, obtaining promising performance
in both still frames and full-sequence sets. The global analysis
of methods’ performance shows that some of them are close
to be clinically applicable as they are able to detect polyps in
all sequences with a small reaction time. We have also shown
how there is a clear link between clinical and technical chal-
lenges and that mitigating them is key to improve methods’
performance. As it was expected, our preliminary study proves
that image quality and careful mucosa inspection do have a
positive impact in methods’ performance.

A deep analysis of the results shows that, as different
methods detect different polyps, there is room for improvement
by combining some of the methods into a new solution. Going
along this line, we have performed a first study on how to
combine some of the methods in order to improve detection
performance. Preliminary results show how the combination of
the best methods can be used to exceed best individual scores,
indicating the potential of creating clinically useful systems
integrating capabilities from several individual methods.

Beyond presenting challenge results, this study shows areas
in which methods might focus to increase their performance,
such as the ability to work equally under different conditions,
the necessity of include spatial and temporal coherence in
full sequences analysis or by considering the presence of
other elements of the scene to help in polyp detection task.
More importantly, this study also shows how efforts should
be made between clinicians and computer scientists to build
up image acquisition protocols that can help to better observe
(clinicians) and analyze (computational methods) the endo-
luminal scene. Finally and concerning availability of data
to test methods, the study shows that granting access to
large available labelled data is needed for a comprehensive
validation of a polyp detection method and that this might
lead to a boost in performance of end-to-end learning methods.
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We believe efforts should also be made to create and use
data from new imaging technologies such as magnification
endoscopy or virtual chromoendoscopy, due to increased visu-
alization performance already observed by clinicians.

After analyzing the complete validation study, we have
detected several areas in which the study can be extended to
provide with an even deeper comparative analysis of the per-
formance of polyp detection methods. More precisely, future
studies should tackle some of the issues detected such as the
variability in source data resolution and size and should aim
to cover all different polyp morphological types. Moreover, a
consensus should be reached on how the information provided
by each method is to be interpreted to allow a comparison
beyond simple detection positions. This may result in, apart
from a more complete analysis, a deeper understanding on how
each method works and in which scenarios each of them show
the most benefit, thinking of potential optimized combinations
of them to finally build up a clinically useful method.
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Abstract

Since their debut in 1987, snakes (active contour models) have become a standard image analysis technique with several variants now
in common use. We present a framework called ‘‘United Snakes’’, which has two key features. First, it unifies the most popular snake
variants, including finite difference, B-spline, and Hermite polynomial snakes in a consistent finite element formulation, thus expanding
the range of object modeling capabilities within a uniform snake construction process. Second, it embodies the idea that the heretofore
presumed competing technique known as ‘‘live wire’’ or ‘‘intelligent scissors’’ is in fact complementary to snakes and that the two tech-
niques can advantageously be combined by introducing an effective hard constraint mechanism. The United Snakes framework amplifies
the efficiency and reproducibility of the component techniques, and it offers more flexible interactive control while further minimizing
user interactions. We apply United Snakes to several different medical image analysis tasks, including the segmentation of neuronal den-
drites in EM images, dynamic chest image analysis, the quantification of growth plates in MR images and the isolation of the breast
region in mammograms, demonstrating the generality, accuracy and robustness of the tool.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Snakes; Active contours; Live wire; Intelligent scissors; Finite elements; Interactive image analysis; Neuronal dendrite segmentation; Dynamic
chest image analysis; Growth plate quantification; Breast region isolation
1. Introduction

Snakes (active contour models) quickly gained popular-
ity following their debut in 1987 (Kass et al., 1988). They
have proven to be especially useful in medical image anal-
ysis (McInerney and Terzopoulos, 1996; Singh et al., 1998)
and for tracking moving objects in video (Terzopoulos and
Szeliski, 1992; Blake and Isard, 1998), among other appli-
cations. Variants such as finite element snakes (Cohen and
Cohen, 1993), B-snakes (Menet et al., 1990; Blake and
Isard, 1998), and Fourier snakes (Staib and Duncan,
1992) have been proposed in an effort to improve aspects
of the original finite difference implementation (e.g., to
decrease initialization sensitivity, increase robustness
1361-8415/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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against noise, improve selectivity for certain classes of
objects, etc.). No formulation has yet emerged as the ‘‘gold
standard’’. Rather, the primary variants seem well-suited to
different applications with particular image modalities and
processing scenarios.

Given the broad array of choices for the user, there is a
need for a portable and reusable snakes implementation
which unites the best features of the variants while main-
taining the simplicity and elegance of the original formula-
tion. To this end, our first contribution in this paper is to
unify the most important snakes variants, including finite
difference, B-spline, and Hermite polynomial snakes, in a
comprehensive finite element formulation, where a particu-
lar type of snake can be derived by simply changing the
finite element shape functions at the user level.

Subsequent to snakes, a related technique, known as
‘‘live wire’’ or ‘‘intelligent scissors’’ (Mortensen et al.,
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1995; Falcão et al., 1996; Barrett and Mortensen, 1997;
Falcão and Udupa, 1997; Mortensen and Barrett, 1998;
Falcão et al., 1998, 2000) emerged as an effective interactive
boundary tracing tool. Based on dynamic programming
(Falcão et al., 1998) or Dijkstra�s graph search algorithm
(Mortensen and Barrett, 1998), it was originally developed
as an interactive 2D extension to earlier optimal boundary
tracking methods. Live wire features several similarities
with snakes, but it is generally considered in the literature
as a competing technique. Our second contribution in this
paper is the idea that live wire and snakes are in fact com-
plementary techniques that can be advantageously com-
bined via a simple yet effective method for imposing hard
constraints on snakes. An advantage of this combination
is the efficient handling of large images – a potential obsta-
cle for live wire alone.

We call our software implementation United Snakes

(Liang et al., 1999a,b), because it unites several snake vari-
ants with live wire to offer a general purpose tool for inter-
active image segmentation that provides more flexible
control while reducing user interaction. United Snakes is
implemented in the highly portable Java programming lan-
guage. We have applied United Snakes to several different
medical image analysis tasks including the segmentation of
neuronal dendrites in EM images, dynamic chest image
analysis, the quantification of growth plates in MR images
and the isolation of the breast region in mammograms,
demonstrating the generality, accuracy, robustness, and
ease of use of the tool.

In the remainder of this paper, we first describe our
finite element framework in Section 2 and show how sev-
eral snake variants can be integrated within it. Section 3
describes the live wire technique. We justify the idea of
combining snakes with live wire in Section 4 and develop
a hard constraint mechanism in Section 5 that makes this
combination possible. Section 6 presents results utilizing
the United Snakes system in medical image segmentation
scenarios. We conclude in Section 7 and propose future
extensions of United Snakes.

2. Finite element unification of snakes

A snake is a time-varying parametric contour v(s, t) =
(x(s, t),y(s, t))T in the image plane ðx; yÞ 2 R2, where x

and y are coordinate functions of parameter s and time t.
The shape of the contour subject to an image I(x,y) is dic-
tated by an energy functional EðvÞ ¼ SðvÞ þPðvÞ. The
first term is the internal deformation energy defined as

SðvÞ ¼ 1

2

Z L

0

aðsÞ ov
os

����
����
2

þ bðsÞ o
2v

os2

����
����
2

ds; ð1Þ

where a(s) controls the ‘‘tension’’ of the contour and b(s)
regulates its ‘‘rigidity’’. The second term is an external im-
age energy

PðvÞ ¼
Z L

0

P IðvÞ ds; ð2Þ
which couples the snake to the image via a scalar potential
function PI(x,y) typically computed from I(x,y) through
image processing. The Euler–Lagrange equations of mo-
tion for a dynamic snake are

l
o2v

ot2
þ c
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os
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o2v

os2

� �
¼ qðvÞ. ð3Þ

The first two terms represent inertial forces due to the mass
density l(s) and damping forces due to the dissipation den-
sity c(s). The next two terms represent the internal stretch-
ing and bending deformation forces. On the right-hand side
are the external forces q(v) = �$PI(v) + f(s, t), where the
image forces are the negative gradient of the image poten-
tial function. The user may guide the dynamic snake via
time-varying interaction forces f(s, t) (usually applied
through an input device such as a mouse), driving the
snake out of one energy minimizing equilibrium and into
another. Viewed as a dynamical system, the snake may also
be used to track moving objects in a time-varying (video)
image I(x,y, t).

2.1. Finite element formulation

In a finite element formulation (Zienkiewicz and Taylor,
1989), the parametric domain is partitioned into finite sub-
domains, so that the snake contour is divided into ‘‘snake
elements’’. Each element e is represented geometrically
using shape functions N(s) and nodal variables ue(t). The
nodal variables of all the elements are assembled into the
snake nodal variable vector u(t). This leads to a discrete
form of the equations of motion (3) as a system of sec-
ond-order ordinary differential equations in u(t):

M€uþ C _uþ Ku ¼ g; ð4Þ
where M is the mass matrix, C is the damping matrix, K is
the stiffness matrix, and g is the external force vector, which
are assembled from corresponding element sub-matrices
that depend on the shape functions N (Appendix A details
the finite element formulation).

By using different shape functions and thereby generat-
ing different stiffness matrices, the behavior of the resulting
snake can be adapted to specific tasks. For example, snakes
that use B-spline shape functions are typically character-
ized by a low number of degrees of freedom, typically use
polynomial basis functions of degree 2 or higher, and are
inherently very smooth. Therefore, these ‘‘B-snakes’’
(Menet et al., 1990; Blake and Isard, 1998) can be effective
in segmentation or tracking tasks involving noisy images
where the target object boundaries may exhibit significant
gaps in the images. On the other hand, object boundaries
with many fine details or rapid curvature variations may
best be segmented by a snake that uses simpler shape func-
tions and more degrees of freedom, such as a finite differ-
ence snake (Kass et al., 1988). Various contour
representations are reviewed in Gavrila (1996). The unifica-
tion of these different shape functions in a single frame-
work expands the range of object modeling capabilities,
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and the range of segmentation and tracking scenarios that
can be handled by a single tool.

The following sections address Hermitian shape func-
tions, B-spline shape functions, and ‘‘shape functions’’
for finite difference snakes. Since the two coordinate func-
tions x(s) and y(s) of the snake v(s) are independent, we
shall discuss the shape functions in terms of only one com-
ponent x(s); the shape functions for y(s) assume an identi-
cal form.
2.2. Hermitian shape functions

In the case of Hermitian snakes, x(s) (0 6 s 6 l, where l

is the element parametric length) is approximated with a
cubic polynomial function, parameterized by position x

and slope h at the endpoints s = 0 and s = l of an element.
We can show that xðsÞ ¼ Nhu

ei , where uei ¼ ½xi; hi; xiþ1;
hiþ1�T are the nodal variables of element ei and Nh = sH

are the Hermitian shape functions, with s = [1, s, s2, s3]
and the Hermitian shape matrix is

H ¼

1 0 0 0

0 1 0 0

�3=l2 �2=l 3=l2 �1=l

2=l3 1=l2 �2=l3 1=l2

2
6664

3
7775. ð5Þ

It is reasonable to assume that the mass density l(s), the
dissipation density c(s), the tension function a(s) and rigid-
ity function b(s) are constant within the element. Hence,
for element ei, the mass matrix is

Mei ¼ li420l

156 22l 54 �13l

22l 4l2 13l �3l2

54 13l 156 �22l

�13l �3l2 �22l 4l2

2
6664

3
7775 ð6Þ

the damping matrix is

Cei ¼ ci420l

156 22l 54 �13l

22l 4l2 13l �3l2

54 13l 156 �22l

�13l �3l2 �22l 4l2

2
6664

3
7775 ð7Þ

and the stiffness matrices associated with the tension and
rigidity components are, respectively,

Kei
a ¼ ai

30l

36 3l �36 3l

3l 4l2 �3l �l2

�36 �3l 36 �3l

3l �l2 �3l 4l2

2
6664

3
7775; ð8Þ

Kei
b ¼ bi

l3

12 6l �12 6l

6l 4l2 �6l 2l2

�12 �6l 12 �6l

6l 2l2 �6l 4l2

2
6664

3
7775. ð9Þ

An analytic form of the external forces q(v) in (3) is gener-
ally not available. Therefore, Gauss–Legendre quadrature
(Kwon and Bang, 1997) may be employed to approximate
the value of the integral for the element external force vec-
tor Fe. For element ei we have

Fei
x ¼

Z l

0

NT
h qxðvðsÞÞ ds ¼

X
j

qjNhðnjÞTqxðvðnjÞÞ; ð10Þ

where the subscript x indicates the association with coordi-
nate function x(s), and where nj and qj are the jth Gaussian
integration point and its corresponding weighting coeffi-
cient, respectively. Fei

y is derived in a similar fashion.
To make the global matrix assembly process identical

for all shape functions, we introduce assembling matrices.
Suppose that we have a snake with n elements and N nodes
(N = n if the snake is closed and N = n + 1 if it is open).
For the ith element ei of the snake (0 6 i 6 n � 1), the
assembling matrices are Gei

M ¼ Gei
C ¼ Gei

a ¼ Gei
b ¼ Gei

F ¼
Gei , where

ðGeiÞjk ¼
1 if ðjþ diÞ mod ðdNÞ ¼ k;

0 otherwise

�
ð11Þ

are (2d) · (dN) matrices, with d the number of degrees of
freedom of each node in an element (here d = 2). Hence,
Ka, Kb and F may be assembled as follows:

M ¼
Xn�1

i¼0

ðGei
MÞ

T
MeiðGei

MÞ; ð12Þ

C ¼
Xn�1

i¼0

ðGei
CÞ

T
CeiðGei

CÞ; ð13Þ

Ka ¼
Xn�1

i¼0

ðGei
a Þ

T
Kei

a ðG
ei
a Þ; ð14Þ

Kb ¼
Xn�1

i¼0

ðGei
b Þ

T
Kei

b ðG
ei
b Þ; ð15Þ

F ¼
Xn�1

i¼0

ðGei
F Þ

T
Fei . ð16Þ

In our implementation, we set the element parametric
length l to 1. Only the shape matrix and the assembling
matrices are determined by specific shape functions. There-
fore, in the following section we shall focus only on the der-
ivation of the shape matrix and the assembling matrices for
B-spline shape functions, and briefly mention other kinds
of shape functions which are suitable for snakes.
2.3. B-spline shape functions

For B-spline shape functions, the x(s) coordinate func-
tion of v(s) is constructed as a weighted sum of NB basis
functions Bn(s), for n = 0, . . . ,NB � 1, as follows:
x(s) = B(s)TQx, where BðsÞ ¼ ½B0ðsÞ; . . . ;BNB�1ðsÞ�T; Qx ¼
½x0; . . . ; xNB�1�T and xi are the weights applied to the respec-
tive basis functions Bn(s).

A B-spline span serves as an element in our finite ele-
ment formulation (hence ‘‘span’’ and ‘‘element’’ are inter-
changeable terms). Consequently, we shall determine the
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nodal variables, the shape matrix, and the assembling
matrix associated with a span. When all spans are of unit
length, the knot multiplicities at the breakpoints are
m0, . . . ,mL (L is the number of spans and the total number
of knots NB ¼

PL
i¼0mi), the knot values ki are determined

by ki = l, such that 0 6 ði�
Pl

j¼0mjÞ < mlþ1. Furthermore,
the nth polynomial Br

n;d in span r can be computed as
follows:

Br
n;1ðsÞ ¼

1 if kn 6 r < knþ1;

0 otherwise;

�
ð17Þ

Br
n;dðsÞ ¼

ðsþ r� knÞBr
n;d�1ðsÞ

knþd�1 � kn
þ
ðknþd � s� rÞBr

nþ1;d�1ðsÞ
knþd � knþ1

.

ð18Þ

For span r, the index br for the first basis function whose
support includes the span can be determined as
br ¼ ½ð

Pr
i¼0miÞ � d� modNB. Therefore,

I ¼ ½br; ðbr þ 1Þ modNB; . . . ; ðbr þ d � 1Þ modNB�
are the indices of the nodal variables and also those of the d
polynomials Br

n;d .
1 Now, the shape matrix for span r can be

constructed by collecting the coefficients of each of the d

polynomials Br
n;d as its columns. For example, the shape

matrix of a regular cubic B-spline is

H ¼

1=6 2=3 1=6 0

�1=2 0 1=2 0

1=2 �1 1=2 0

�1=6 1=2 �1=2 1=6

2
6664

3
7775 ð19Þ

and the element matrices for element ei are

Mei ¼ li

5040

20 129 60 1

129 1188 933 60

60 933 1188 129

1 60 129 20

2
6664

3
7775; ð20Þ

Cei ¼ ci
5040

20 129 60 1

129 1188 933 60

60 933 1188 129

1 60 129 20

2
6664

3
7775; ð21Þ

Kei
a ¼ ai

120

6 7 �12 �1

7 34 �29 �12

�12 �29 34 7

�1 �12 7 6

2
6664

3
7775; ð22Þ

Kei
b ¼ bi

6

2 �3 0 1

�3 6 �3 0

0 �3 6 �3

1 0 �3 2

2
6664

3
7775. ð23Þ
1 In an open B-spline snake, d knots are introduced at the two ends. As a
result, the index for the first basis function in the first span is zero (i.e.,
b0 = 0) and the index of the last basis function in the last span is NB � 1.
For a closed B-spline snake, the index needs to be wrapped properly
(Blake and Isard, 1998).
The assembling matrix Gei can be defined as

ðGeiÞjk ¼
1 if ðjþ brÞ modNB ¼ k;

0 otherwise.

�
ð24Þ

In a similar fashion as above, we may construct other kinds
of shape functions; for instance, NURBS shape functions
(Terzopoulos and Qin, 1994), Catmull-Rom shape func-
tions, Bézier shape functions, and Fourier shape functions
(Staib and Duncan, 1992). The latter are global shape func-
tions over the whole snake, thus the associated assembling
matrix becomes an identity matrix.

2.4. Finite difference snakes in element form

Despite the differences between finite element snakes
and finite difference snakes, the finite difference snakes
can also be constructed in the finite element fashion, using
the Dirac delta function d(s) as the shape function. The
construction primitives are as follows. For a snake with n
nodes, Mei is a 1 · 1 matrix and its corresponding assem-
bling matrix Gei

M is a 1 · n matrix:

Mei ¼ li½ 1 �
T½ 1 � ¼ li½ 1 �; ð25Þ

Gei
M

� �
0;k

¼
1 if i ¼ k;

0 otherwise;

�
ð26Þ

where 0 6 i 6 n � 1 for both open and closed snakes. Cei is
also a 1 · 1 matrix with a 1 · n assembling matrix Gei

C:

Cei ¼ ci½ 1 �
T½ 1 � ¼ ci½ 1 �; ð27Þ

Gei
C

� �
0;k

¼
1 if i ¼ k;

0 otherwise;

�
ð28Þ

where 0 6 i 6 n � 1 for both open and closed snakes. Kei
a is

a 2 · 2 matrix and its corresponding assembling matrix Gei
a

is a 2 · n matrix:

Kei
a ¼ ai½ �1 1 �T½ �1 1 � ¼ ai

1 �1

�1 1

� �
; ð29Þ

Gei
a

� �
jk
¼

1 if ðjþ iÞ modn ¼ k;

0 otherwise;

�
ð30Þ

where 0 6 i 6 n � 2 for an open snake and 0 6 i 6 n � 1
for a closed snake. Kei

b is a 3 · 3 matrix and with it is asso-
ciated a 3 · n assembling matrix Gei

b :

Kei
b ¼ bi½ 1 �2 1 �T½ 1 �2 1 � ¼ bi

1 �2 1

�2 4 �2

1 �2 1

2
64

3
75;
ð31Þ

Gei
b

	 

jk
¼

1 if ðjþ iÞ modn ¼ k;

0 otherwise;

�
ð32Þ

where 0 6 i 6 n � 3 for an open snake and 0 6 i 6 n � 1 for
a closed snake. The 1 · n assembling matrixGei

F is defined as

Gei
F

� �
0;k

¼
1 if i ¼ k;

0 otherwise;

�
ð33Þ

where 0 6 i 6 n � 1 for both open and closed snakes.
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pixel localization by fitting an edge model to the tobogganed region
boundaries.
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With the above formulation of finite difference snakes,
we have a uniform finite element construction for a variety
of snake representations, which leads to a relatively
straightforward United Snakes implementation in an
object-oriented programming language, such as Java.

3. Live wire

Live wire (or intelligent scissors) is a recently proposed
interactive boundary tracing technique (Mortensen et al.,
1995; Falcão et al., 1996, 1997; Falcão and Udupa, 1997;
Mortensen and Barrett, 1998; Falcão et al., 1998; Falcão
et al., 2000). Although it shares some similarities with
snakes – it was originally developed as an interactive 2-D
extension to previous stage-wise optimal boundary track-
ing methods – it is generally considered in the literature
as a competing technique to snakes. Like snakes, the idea
behind the live wire technique is to allow image segmenta-
tion to occur with minimal user interaction, while at the
same time allowing the user to exercise control over the
segmentation process. However, live wire realizes the idea
differently from snakes.

Live wire is very easy to use. The user begins by placing
an initial seed point near the boundary of the object of
interest. As the cursor, or free point is moved around the
image, the current calculated boundary, called the live wire
or trace, from the seed point to the free point is dynami-
cally displayed. If the displayed trace is acceptable and
the user clicks the mouse, the free point is collected as an
additional seed point, and this trace will be frozen and will
become part of the extracted object boundary. The result-
ing live wire boundaries are piecewise optimal (i.e., optimal
between seed points), while the snake gives an optimal
solution over the entire contour.

The genesis of live wire has its origin in the early col-
laboration between Udupa (University of Pennsylvania)
and Barrett (Brigham Young University) (Mortensen
and Barrett, 1998; Falcão et al., 1998). Their two research
groups have since independently developed different live
wire systems. They share two essential components: a
local cost function that assigns lower cost to image fea-
tures of interest, such as edges, and an expansion process
that forms optimal boundaries for objects of interest
based on the cost function and seed points provided inter-
actively by the user. However, they employ different
underlying graph models with different local cost func-
tions. In (Mortensen and Barrett, 1998), each pixel repre-
sents a graph node, and directed, weighted edges are
created between each pixel and its eight adjacent neigh-
bors. In (Falcão et al., 1998), the graph nodes are pixel
corners and they are connected by oriented, weighted edge
cracks, called boundary elements (bels for short). In both
cases, when the image is large, a corresponding large
underlying graph may have to be maintained and live wire
performance will be compromised. To improve the effi-
ciency of live wire, the two groups have developed exten-
sions known as live lane (Falcão et al., 1998) and
toboggan-based intelligent scissors (Mortensen and Bar-
rett, 1998; Mortensen, 2000), respectively.

Live-wire-like user interaction techniques have been
proposed in the snakes literature. In (Cohen and Kimmel,
1997), Cohen and Kimmel compute the global minimal
path between two points using Sethian�s fast marching
algorithm (Sethian, 1997), which has sub-pixel accuracy2

and may eliminate metrication errors of graph search algo-
rithms. A minimal path between two points is also
obtained in (Grzeszczuk and Levin, 1994) based on simu-
lated annealing. In a technique called ‘‘static’’ snakes, pro-
posed in (Neuenschwander et al., 1994), the user initially
specifies two end snake points and then the snake takes
image information into account progressively from the
two end points to its center, resulting in a minimal path
between the two points. A similar technique has also been
proposed in (Hyche et al., 1992). Dubuisson-Jolly and
Gupta have formulated tracking an active contour with
shape constraints in an image sequence as a shortest path
problem (Dubuisson-Jolly and Gupta, 2001).

3.1. Trace formation

Boundary finding in live wire can be formulated as a
directed graph search for an optimal (minimum cost) path
using Dijkstra�s algorithm in the underlying graph model.
First, the graph is initialized with the local costs as
described in the next section. Once the user selects a seed
point (node), it will be used as the starting point for a
recursive expansion process. In the expansion process, the
local cost at the seed point is summed into its neighboring
nodes. The neighboring node with the minimum cumula-
tive cost is then further expanded and the process produces
a dynamic ‘‘wavefront’’. The wavefront expands in the
order of minimum cumulative cost. Consequently, it prop-
agates preferentially in directions of highest interest (i.e.,
along image edges).

For any dynamically selected goal node (i.e., the free
point) within the wavefront, the optimal path back to the
seed point which forms a live wire trace can be displayed
in real time. When the cursor (the free point) moves, the
old live wire trace is erased and a new one computed and
displayed in real time. The expansion process aims to com-
pute an optimal path from a selected seed point to every

other point in the image and lets the user choose among
paths interactively, based on the current cursor position.

Live wire may be implemented very efficiently in multi-
threaded programming languages, such as Java, because
the expansion process and the user interface can execute
in separate, parallel threads. Since the free point is gener-
ally near the target object boundary, the expansion process
will most likely have already advanced beyond that point
and the live wire trace can be displayed immediately. That
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is, the live wire trace can typically be displayed before the
expansion process has finished sweeping over the entire
image. Therefore, our implementation (Liang et al.,
1999a,b) is equivalent to the interleaved computation pro-
posed in (Mortensen et al., 1995; Mortensen and Barrett,
1998) or live wire-on-the-fly introduced in (Falcão et al.,
2000) in terms of computation cost, and the multi-threaded
Java implementation is more elegant in software design
and in supporting user interactions.
3.2. Local cost functions

Many local cost functions can be defined. In (Mortensen
et al., 1995), the local cost l(p,q) on the directed link from p
to a neighboring pixel q is defined as a weighted sum of six
local component costs created from various edge features:

lðp; qÞ ¼ xZfZðqÞ þ xGfGðqÞ þ xDfDðp; qÞ þ xPfPðqÞ
þ xIfIðqÞ þ xOfOðqÞ; ð34Þ

where fZ(q) is the Laplacian zero-crossing function at
q, fG(q) is the gradient magnitude at q, fD(p,q) is the gradi-
ent direction from p to q, fP(q) is the edge pixel value at
q, fI(q) and fO(q) are the ‘‘inside’’ and ‘‘outside’’ pixel values
at q, respectively, while xZ, xG, xD, xP, xI and xO are
their corresponding weights.

The Laplacian zero-crossing function fZ(q) is a binary
function defined as

fZðqÞ ¼
0 if ILðqÞ ¼ 0;

1 otherwise;

�
ð35Þ

where IL(q) is the Laplacian of the image I at pixel q. The
gradient magnitude serves to establish a direct connection
between edge strength and cost. The function fG is defined
as an inverse linear ramp function of the gradient magni-
tude G

fG ¼ maxðG0Þ � G0

maxðG0Þ ¼ 1� G0

maxðG0Þ ; ð36Þ

where G 0 = G � min(G). When calculating l(p,q), the
function fG(q) is further scaled by 1 if q is a diagonal
neighbor to p and by 1=

ffiffiffi
2

p
if q is a horizontal or vertical

neighbor.
The gradient direction fD(p,q) adds a smoothness con-

straint to the boundary by associating a higher cost for
sharp changes in boundary direction. With D 0(p) defined
as the unit vector normal to the gradient direction D(p)
at pixel p (i.e., D(p) = [Ix(p), Iy(p)] and D 0(p) = [Iy(p),
�Ix(p)]), the formulation of the gradient direction cost is

fDðp; qÞ ¼
2

3p
farccos½dpðp; qÞ� þ arccos½dqðp; qÞ�g; ð37Þ

where dp(p,q) = D 0(p) Æ L(p,q) and dq(p,q) = L(p,q) Æ D 0(q)
are vector dot products and

Lðp; qÞ ¼ 1

kp� qk
q� p if D0ðpÞ � ðq� pÞ P 0;

p� q if D0ðpÞ � ðq� pÞ < 0

�
ð38Þ
is the normalized bidirectional link or unit edge vector be-
tween pixels p and q.

Along with the gradient magnitude fG, pixel value fea-
tures (fP, fI and fO) are used in on-the-fly training to
increase the live wire dynamic adaptation (Mortensen
and Barrett, 1998). With the typical gray-scale image pixel
value range [0,255], they are defined as

fPðqÞ ¼
1

255
IðpÞ; ð39Þ

fIðqÞ ¼
1

255
Iðpþ k �DðpÞÞ; ð40Þ

fOðqÞ ¼
1

255
Iðp� k �DðpÞÞ; ð41Þ

where D(p) is the unit vector of the gradient direction as de-
fined above, and k is a constant distance value for deter-
mining the inside and outside features.

In (Falcão et al., 1998), the local cost assigned to each
boundary element (bel) b is a linear combination of the
costs with its eight possible features fi:

lðbÞ ¼
P8

i¼1wicfiðfiðbÞÞP8
i¼1wi

; ð42Þ

where wi is the associated weight with feature fi, and where
cfi , called the feature transform function of feature fi, con-
verts feature value fi(b) into a cost value. The eight features
of a bel b include the intensity values on positive and neg-
ative sides of b (f1 and f2), four different gradient magnitude
approximations (f3, f4, f5, f6), orientation-sensitive gradient
magnitude (f7) and boundary distance (f8). Each feature va-
lue (fi, 1 6 i 6 8) may be converted into a cost value with
any of the following six feature transforms: linear (c1), in-
verted linear (c2), Gaussian (c3), inverted Gaussian (c4),
modified hyperbolic (c5), and inverted modified hyperbolic
(c6). Training methods have been developed for optimum
selection of the bel features and automatic selection of
the parameters with their feature transforms, based on
the typical segments painted by the user along the desired
object boundary.
4. Combining snakes and live wire

Excluding user interaction, an accurate initialization is
generally needed in order for a snake to lock onto image
features of interest in all but the simplest images. There-
fore, researchers have been actively investigating tech-
niques to mitigate the sensitivity of snakes to their
initialization. Among these techniques are the use of an
inflation force (Terzopoulos et al., 1988; Cohen and Cohen,
1993), a chamfer distance map (Cohen and Cohen, 1993)
and gradient vector flow (Xu and Prince, 1998). These tech-
niques can work well if the image feature map is relatively
clean. However, most clinical images are noisy, contain
many uninteresting edges, or texture is present. Hence,
these more automatic techniques can fail. For this reason,
we explore an alternative direction – instead of attempting



Fig. 1. (a) Delineation of the lung in X-ray fluoroscopy images using live
wire (seed points are shown). (b) A Hermite snake instantiated from live
wire traces with the first seed point imposed as a hard constraint. It is
interactively pulled out of the strong edge with spring forces and then
locks onto the lung boundary.

Fig. 2. Live wire bridges the gap along the vessel boundary (a) and passes
through a noisy region (b) in an MR wrist image.
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to mitigate initialization sensitivity, we seek to increase the
efficiency of interactive initialization. In particular, we
enable the user to instantiate (i.e., construct, initialize,
and activate) snakes quickly and with minimal effort by
exploiting the strengths of the live wire technique.

In this section, we first justify the complementarity of
snakes and live wire, and then we show that the combina-
tion of snakes and live wire also provides an efficient mech-
anism for handling large images.

4.1. Snakes and live wire are complementary

There are numerous ways to define the local cost func-
tions in live wire, as long as sufficiently low cost values
are assigned to the desired object boundaries. Therefore,
various techniques developed for computing snake poten-
tials (Kass et al., 1988; Blake and Isard, 1998) can be used
for the generation of local cost maps in live wire. For
instance, the chamfer distance map (Cohen and Cohen,
1993) and gradient vector flow (Xu and Prince, 1998) are
readily usable. Similarly, the local cost map computed for
live wire may be treated as an image potential in snakes.
Therefore, in United Snakes, snakes and live wire may
share the same image potential (local cost map).

In general, live wire provides user-friendly control dur-
ing the segmentation process. The user may freely move
the free point on the image plane, and the corresponding
live wire trace is interactively displayed in real time. How-
ever, once the free point is collected as an additional seed
point, the trace is frozen and it becomes a part of the
extracted object boundary. At this point, the user has no
further control over the trace between seed points other
than backtracking. Therefore, when the shape of the object
boundary is complex or when object boundaries are noisy
and unclear, the user may need to backtrack to produce
acceptable traces. Consequently, many seed points may
be needed to guide the live wire to an accurate result. Fur-
thermore, it is not uncommon for the user to make small
errors when placing seed points using a mouse or other
input device, forcing the user to repeat the placement. By
contrast, a snake may be dynamically adjusted or refined
as it deforms at any time and at any point on the snake
via intuitive mouse-controlled forces. However, the best
performance of the snake is often achieved when user-spec-
ified constraint points are utilized. The constraint points do
not ‘‘lock in’’ the solution – they too may be changed
dynamically, allowing further refinement of the extracted
object boundary.

Live wire seeks a global minimal path between two
points. Therefore, when a section of the desired object
boundary has a weak edge relative to a nearby strong but
uninteresting edge, the live wire snaps to the strong edge
rather than the desired weaker boundary. In order to mit-
igate this problem, Falcão et al. (1998) have developed
training techniques for optimum feature selection and
automatic parameter selection, and Mortensen and Barrett
have proposed on-the-fly training (Mortensen and Barrett,
1998). Basically, these techniques (dynamically) update
the cost map to filter out the image features which do
not have edge characteristics similar to the sample bound-
ary specified by the user. In other words, these methods
rely on the assumption that the edge property is relatively
consistent along the object boundary. Training is most
effective for those objects with relatively consistent bound-
ary properties and may be counter-productive for objects
with sudden and/or dramatic changes in their boundary
properties (Mortensen and Barrett, 1998). For example,
in the lung image of Fig. 1(a), the live wire snaps to the
strong edges of the elliptical viewport rather than the
desired lung boundary. In this case, training is ineffective
since the edge property of the lung boundary varies consid-
erably over its extent and is also disturbed by the ribs (not
obvious to the eye). Consequently, it is difficult to specify a
typical segment of the lung boundary. Nevertheless, in situ-
ations where training can be effective, snakes can also take
advantage of it by utilizing the trained cost map. More-
over, in United Snakes, the user has more control, using
spring forces to pull the snake out of one minimum into
another without training, as shown in Fig. 1(b).

The underlying graph search makes it possible for live
wire to bridge boundary gaps and pass through noisy
areas. For instance, in MR wrist images from Falcão
et al. (2000) (Fig. 2), live wire bridges the gap along the ves-
sel boundary in Fig. 2(a) and passes through a noisy region
in Fig. 2(b). Even if there are no image features at all
between two points, live wire can still provide a minimal
path – a straight line. However, live wire is inherently



Fig. 3. (a) Delineation of the heart in X-ray fluoroscopy images using live
wire (seed points are shown). (b) The unacceptable segment replaced by
manual drawing. Alternately, the user may place multiple seed points and
let live wire generate a piecewise linear path between adjacent seed points
to approximate the missing cardiac boundary. (c) Initial B-spline snake
and control polygon instantiated from live wire traces in (b). (d) Resulting
segmentation after a few iterations with control point 3 as a hard
constraint, which effectively bridges the gaps along the cardiac boundary.
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image-based, rather than model-based. Fundamentally, it
is not designed to bridge gaps in a manner that is consistent
with the image features bordering the gaps and the smooth-
ness of the traces cannot be guaranteed. For instance, in
Fig. 3(a), part of the live wire trace from seed point 1 to
seed point 2 is a straight line where the cardiac boundary
is missing, and the live wire technique does not generate
an acceptable cardiac boundary from seed point 3 to seed
point 1. The user may place multiple seed points and let live
wire generate a piecewise linear path between adjacent seed
points to approximate the missing cardiac boundary. In
this case, we have found that it is convenient to draw a
rough curve manually between the points (Fig. 3(b)).
Snakes, on the other hand, are model-based and were
designed to adhere to image edges and interpolate between
edge features in regions of sparse and noisy data (i.e., fill in
the gaps). For example, a B-snake instantiated from the
live wire traces is more effective in bridging the gaps along
the cardiac boundary, as shown in Fig. 3(d).

In summary, it is desirable to enable the user to exercise
more control over the live wire traces between seed points,
Fig. 4. Segmenting a vessel in an angiogram. (a) The image used in (Mortensen
boundaries comparable to ideal boundaries in (Mortensen and Barrett, 1998).
impose smoothness on live wire traces, and bridge compli-
cated gaps along object boundaries. This is what snakes are
good at doing. Snakes adhere to edges with sub-pixel accu-
racy and they may also be adjusted interactively as para-
metric curves with intuitively familiar physical behaviors.
Furthermore, snakes have the power to track moving
objects, while live wire does not.

However, the efficient performance of interactive snakes
is linked to fast, reasonably accurate initialization and
user-specified constraints. Even with a few seed points, live
wire can quickly give much better results than casual man-
ual tracing. Hence, the resulting live wire boundary can
serve well to instantiate a snake. The live wire seed points
reflect the user�s prior knowledge of the object boundary.
They can therefore serve as either hard or soft point con-
straints for the snake, depending on the user�s confidence
in the accuracies of these seed points.

Because a live wire-traced initial object boundary is
more accurate than a hand-drawn boundary, and with
the further incorporation of the seed points as snake con-
straints, the snake will very quickly lock onto the desired
object boundary. If necessary, the user may then correct
mistakes inherited from the live wire-generated boundary
by applying mouse-controlled spring forces to the snake.
Because the user still has the opportunity to correct the
deficiencies of the trace as the snake is evolving, the num-
ber of seed points needed by live wire to generate the object
boundary can be further reduced. Consequently, a satisfac-
tory initial object boundary can be generated very quickly
using live wire. Other hard or soft constraints may be
added during the snake deformation process as well.
Because constrained values may be changed dynamically,
the user may adjust the seed points to further refine the
object boundary as the snake deforms.

To illustrate their performance, we apply United Snakes
to an angiogram (Fig. 4) and a vertebra image (Fig. 5), to
which Mortensen and Barrett applied their live wire algo-
rithm in (Mortensen and Barrett, 1998). With only a few
seed points, United Snakes generate the boundaries shown
in Figs. 4 and 5(c), which are comparable to the ideal
boundaries used as references in (Mortensen and Barrett,
1998).

As further evidence that the United Snakes framework
improves upon the robustness and accuracy of its compo-
nent techniques, Fig. 6 shows a synthetic image of a known
curve degraded by strong Gaussian white noise (variance
and Barrett, 1998). (b) Live wire segmentation. (c) United Snakes generate



Fig. 5. Segmenting the outer boundary of a vertebra. (a) The image used in (Mortensen and Barrett, 1998). In United Snakes, we only expect a coarse
object boundary from live wire. To illustrate this point, referring to Eq. (35), we have set xG = 0.50, xZ = 0.5, and turned all the other parameters off (i.e.,
xD = xP = xI = xO = 0), resulting in the live wire segmentation (b). From it, United Snakes generate a boundary (c) which is comparable to the ideal

boundary in (Mortensen and Barrett, 1998).

Fig. 6. Performance of United Snakes demonstrated using a noisy synthetic image. This image was designed to challenge the snakes and live wire with the
high curvature points as well as the small wave details. (a) A live wire is sensitive to noise (the required seed points are shown). (b) United Snakes are
robust against noise. (c) The segmented boundary accurately conforms to the ideal boundary.
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0.25). Given its image-based nature, the live wire is sensi-
tive to noise as shown in Fig. 6(a). A snake instantiated
by the live wire gives a better result (Fig. 6(b)). Fig. 6(c)
shows that the United Snakes result is very close to the
boundary in the ideal image, despite the strong noise. This
performance is a consequence of the imposed hard con-
straints, without which the snake would slip away from
high curvature points.

4.2. Handling large images

Large images are now common in clinical settings
because high resolution is often needed to make accurate
diagnoses. For instance, in the mammogram analysis task
(see Section 6.4), we need to handle images with a typical
resolution of 3500 · 6500 pixels. However, due to the nat-
ure of its underlying graph-based algorithm, the basic live
wire algorithm is unable to handle large images efficiently.
To support user interaction, live wire aims to compute an
optimal path from the last seed to every other point in
the image. Even with our efficient multi-threaded Java
implementation of Dijkstra�s algorithm (e.g., with bucket
sort (Mortensen and Barrett, 1998) or Dia�s method (Fal-
cão et al., 2000)), the performance of live wire will be sig-
nificantly compromised when working with large images.
The reason is that the lower bound of its computational
complexity is O(m), where m is the number of image pixels
involved in the computation of an optimal path from the
seed to the free point; that is, all the pixels within the wave-
front (i.e., the expansion process). In the worst case, m is
the total number of pixels in the image.
For effective user interaction, the thread responsible for
computing an optimal path from the seed point to every
other point in the image should not stop until the user
has selected the current free point as a seed. This ensures
the user may move with more freedom in the image plane
to select optimal paths and quickly generate an acceptable
object boundary with a minimal number of seed points.
That is, the user should be able to place two neighboring
seed points as far apart as desired. However, when the
desired object boundary is not clear/sharp (e.g., chest
images, mammograms, etc.) or has many branches (e.g.,
a retinal angiogram), the wavefront will spread too widely
and include many pixels for any path of reasonable length.
As a result, the memory required to maintain the auxiliary
information in Dijkstra�s algorithm will increase dramati-
cally for large images. Furthermore, as demonstrated also
in (Falcão et al., 2000), when the image size changes from
128 · 128 to 1024 · 1024, the live wire performance will be
reduced by a factor of 400, and the ultra fast live wire on
the fly may still be 40 times slower.

The combination of live wire and snakes in United
Snakes provides a new mechanism for handling large
images. The computational complexity of snakes is O(n)
in each iteration, where n is the number of snake nodal
variables. In United Snakes, we typically require live wire
to generate only a coarse boundary with a few seed points.
Therefore, we can construct a truncated pyramid of images,
and let the live wire work at the top of the pyramid with a
small image size (for example, 128 · 128 or 256 · 256), thus
efficiently supporting user interaction. The snake ‘‘des-
cends’’ the image pyramid from coarse to fine levels of
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resolution, tolerating any live wire errors introduced at the
top of the pyramid, and accurately locks onto the desired
object boundary. The original large image is still displayed
to the user and thus the seed points can generally be accu-
rately specified or dynamically adjusted if necessary. The
extra memory needed to maintain the pyramid is offset
by the reduced memory necessary for the auxiliary infor-
mation in Dijkstra�s algorithm. In practice, we do not have
to maintain a pyramid for the original image, but only for
the image potential. Assuming the pyramid has n levels and
the original image occupies M amount of memory, the
extra memory required for the pyramid then is
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while the reduced auxiliary memory (e.g., only for the
cumulative cost map) in the live wire implementation is
ð1� 1

4ðn�1ÞÞM .
Fig. 7. (a) A retinal angiogram with pixel resolution 256 · 256 obtained by do
marked target points. (c) The superimposed live wire traces shown only for t
instantiated from the live wire traces in (c) descend the truncated pyramid rea
large image (f). This mechanism supports real-time user interaction: once po
available when the user points to a new position (such as, the 10 targets) on t
As a demonstration, Fig. 7(a) shows a retinal angio-
gram with pixel resolution of 256 · 256 obtained by
down-sampling the original large image with resolution
1024 · 1024. Suppose we would like to trace the vessel
starting from point S to one of the target points 0–9
(see Fig. 7(b)). Once point S is selected as the first seed,
the corresponding branch should ideally be instantly
available once the user points to any of the 10 branch
end-points. This real-time user interaction is achievable
by live wire when the image size is under 300 · 300 on
modest PCs (Fig. 7(c)). For larger images, however,
real-time user interaction becomes increasingly difficult
to achieve using live wire alone. Table 1 shows the time
needed for the wavefront to reach the 10 targets as well
as the time needed to sweep over the entire image at dif-
ferent resolutions on an 866 MHz Pentium PC with SUN
JDK1.3. From the table, we can see that the time
required at 256 · 256 resolution is approximately 1/4 of
wn-sampling the original 1024 · 1024 image. (b) The seed point S and 10
he first and last target points. (d) The superimposed snakes dynamically
ching the intermediate level with resolution 512 · 512 (e) and the original
int ‘‘S’’ is selected as a seed, the corresponding vessel branch is instantly
he original large image.



Table 1
The time (in milliseconds) needed for the wavefront to reach the 10 targets shown in Fig. 7, as well as the time needed to sweep over the entire image at
different resolutions on an 866 MHz Pentium PC with SUN JDK1.3

Targets 0 1 2 3 4 5 6 7 8 9 Entire image

256 · 256 65 109 118 131 131 170 205 211 225 240 405
512 · 512 374 526 545 604 805 875 979 1025 1081 1248 2178
1024 · 1024 1562 2293 2393 2703 3479 3683 4425 4543 4688 5481 9802

The time required at 256 · 256 resolution is approximately 1/4 of that at 512 · 512 resolution, which is roughly 1/4 of that at 1024 · 1024 resolution. The
time needed for a snake sliding down is O(n) in each iteration, where n is the number of snake nodal variables. We use five iterations at each level of the
pyramid. The longest snake (from point S to point 9 in Fig. 7) in this experiment has 100 nodal variables. When the live wire trace is available at the top
level (256 · 256), it takes 15 iterations or 77 ms for the snake to descend the pyramid. So, the total time needed is 317 (77 + 240) ms, which is much less
than 5481 ms when working directly at the resolution of 1024 · 1024.
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that at 512 · 512 resolution, which is roughly 1/4 of that
at 1024 · 1024 resolution. This can be justified by the
observation that reducing an image by a factor of 2 in
linear dimension while maintaining its aspect ratio
reduces its area in pixels to 1/4, and that the complexity
of the wavefront computation is proportional to the lat-
ter. Thus, with a three-level pyramid, we can make the
algorithm approximately 16 times faster and, with four
levels, it becomes approximately 64 times faster.

In United Snakes, snakes that are dynamically instanti-
ated from live wire traces at the top of the truncated image
pyramid can easily descend the pyramid, reaching the ori-
ginal large image (Fig. 7(f)) via intermediate level(s)
(Fig. 7(e)), resulting in real-time user interaction on the ori-
ginal large image. Thus, United Snakes with the image
pyramid scheme yields real-time response – a critical factor
in any interactive segmentation scheme – with sub-pixel
accuracy in original large images.

5. Hard constraints

Our combination of snakes and live wire relies on an
efficient constraint mechanism. A constraint on a snake
may be either soft or hard. Hard constraints generally com-
pel the snake to pass through certain positions or take cer-
tain shapes, whereas soft constraints merely encourage a
snake to do so. Two kinds of soft constraints, springs
and volcanos, were described in the original snakes paper
(Kass et al., 1988) and they are incorporated into our finite
element formulation. Hard constraints have been used to
prevent snake nodes from clustering in dynamic program-
ming snakes (Amini et al., 1990). Generic hard constraints
are discussed in (Fua and Brechbühler, 1997,). In this sec-
tion, we propose a convenient mechanism, called pins, as a
simple yet effective way to impose hard constraints on
snakes for the integration of snakes and live wire.

Suppose that we wish to guarantee that the snake node i
sticks at position ðxci ; yci Þ in the Hermitian parameteriza-
tion. Recall that in the Hermitian parameterization, the
polynomial shape of each element is parameterized by the
position and slope of x(s) and y(s) at the two nodes (posi-
tion and slope variables occupy alternating positions in the
nodal variable vector u). Therefore, the snake stiffness
matrix K may be updated with
K2i;j ¼
1 if 2i ¼ j;

0 otherwise;

�
ð44Þ

where 0 6 j 6 2(N � 1) and N is the number of snake
nodes. The system force vector F is updated as

Fx
2i ¼ xci ; Fy

2i ¼ yci ; ð45Þ
where x and y indicate coordinate function x(s) and y(s),
respectively. It is then guaranteed that the snake node i is
always at position ðxci ; yci Þ.

A drawback of this simple technique, however, is that
the updated system stiffness matrix is no longer symmetric.
Consequently, we are unable to store the stiffness matrix
economically using skyline storage, nor factorize it into
LDLT form (see Appendix A). Nevertheless, since the posi-
tion of node i is given, a constant force may be derived
from the stiffness matrix for each degree of freedom and
subtracted from its corresponding position in the system
force vector so that we can restore the symmetry of the
stiffness matrix while keeping the system in balance. In
our implementation, we store column 2i of K into a vector
k2i; i.e., k2i

j ¼ Kj;2i, for 0 6 j 6 2(N � 1), before K is made
symmetric with

Kj;2i ¼
1 if 2i ¼ j;

0 otherwise.

�
ð46Þ

To keep the system in balance, the system force vector F is
updated with

Fx
j ¼ Fx

j � xcik
2i
j ; Fy

j ¼ Fy
j � ycik

2i
j ð47Þ

for 0 6 j 6¼ 2i 6 2(N � 1). We can constrain the slope in the
same way. If we constrain two node variables of an element
in both position and slope, this element will be frozen. Its
two neighboring elements will also be influenced by the
constraint. The constraints on a B-snake are imposed on
the nodes of its control polygon. Imposing hard constraints
in this manner also lessens computational cost, in terms of
both memory and time, since the number of entries in the
skyline storage of the stiffness matrix is reduced. Conse-
quently, the LDLT factorization and forward/backward
substitutions can be performed more efficiently (see Appen-
dix A). It is also possible to apply more general constraints
to any point on the snake as is described in (Terzopoulos
and Qin, 1994).



Fig. 9. Segmenting the corpus callosum in an MR head image of a human
volunteer. (a) The live wire snaps to the nearby strong edge. (b) An
additional seed bridges the missing boundary. (c) The corresponding snake
with the seed points naturally imposed as hard constraints nicely captures
the desired object. (d) When releasing the hard constraints, the strong
image force in the region of region A will gradually drive the snake away
from the desired boundary, while, in region B, the snake will become
insufficiently peaked due to its internal energy.
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In the formulation above, the updated stiffness matrix
only indicates which degrees of freedom of the snake are
constrained, it does not contain any constraint values.
These are recorded in the system force vector. As a result,
the constraint values may be updated dynamically during
snake deformation. Hence, the user can move the con-
straint points around the image plane to refine the object
boundary as the snake is deforming. This property is very
useful when integrating snakes with live wire. While a
snake is deforming, additional hard constraints may be
imposed on the snake to restrict its deformation. Because
these constraints are unknown before the snake is instanti-
ated, they may be incorporated on-the-fly using reaction
forces on the system force vector without changing the stiff-
ness matrix. However, small time steps are required to
ensure the stability of the snake. In our implementation,
we create a new snake from the current snake plus the hard
constraints, since the LDLT factorization is fast.

Hard constraints play very important roles in capturing
the intricate details and bridging gaps along object bound-
aries in image segmentation. For instance, to segment the
bladder from an MR image of a female abdomen shown
in Fig. 8, neither the live wire (Fig. 8(a)) nor its correspond-
ing, instantiated dynamic snake (Fig. 8(b)) would be able to
capture the intricate details indicated by the rectangle,
which require additional seed points (Fig. 8(c)). With all
the seed points imposed as hard constraints, the corre-
sponding snake accurately captures the details without
Fig. 8. Segmenting the bladder in an MR image of a female abdomen.
Neither the live wire (a) nor its corresponding dynamic snake (b) would be
able to capture the intricate details indicated by the rectangle without
additional live wire seed points (c). (d) With all the seed points naturally
imposed as hard constraints, the corresponding snake accurately captures
the fine, intricate details without any further user intervention. (e) Hard
constraint point 1 is deliberately moved far away from the desired bladder
boundary to illustrate the adjustment capability. (f) Releasing the hard
constraints will lose the details.
any further user intervention as shown in Fig. 8(d). Hard
constraint points may be adjusted to refine the object
boundary. For illustration purposes, hard constraint point
1 has been deliberately moved far away from the desired
bladder boundary in Fig. 8(e). Releasing the hard con-
straints will lose the details as shown in Fig. 8(f).

The desired object boundary might be unclear or even
missing in many clinical images. For example, in segment-
ing the corpus callosum in an MR head image of a human
volunteer, the live wire snaps to the nearby strong edge
9(a), and additional seed points are required to bridge the
missing boundary 9(b). These seed points can be naturally
imposed as hard constraints on the corresponding snake,
which nicely captures the desired object in Fig. 9(c). When
releasing the hard constraints, the strong image force in
region A (see Fig. 9(d)) will gradually drive the snake away
from the desired location, while the snake will become
insufficiently peaked in region B due to its internal energy.

5.1. Static vs. dynamic constraint integration

We have argued that a hard constraint mechanism is
crucial in practical image segmentation. Live wire generally
requires seed points at the critical, complicated locations
where the desired boundary is twisted, unclear, weak or
even missing. These seed points, interactively provided by
the user to guide the live wire, capture the user�s expert
prior knowledge about the desired object boundary, and
they can naturally be imposed as hard constraints on the
snake that is then instantiated from the complete live wire
trace. We refer to this form of livewire-snake integration as
static integration – once the live wire result is used to
instantiate a snake, the segmentation process continues
using only the constrained, user-controlled snake.

A more dynamic constraint integration ‘‘mode’’ is often
useful – once the live wire trace between the last seed point



Fig. 10. Using United Snakes in dynamic mode to segment neuronal EM images. (a) Live wire boundary showing three seed points and free point
(rectangle indicates a problem area). (b) Open snakes dynamically generated from the live wire traces and constrained by seed and free points. (c) Third
snake corrected in the problem area using the mouse.

Fig. 11. Using United Snakes in static mode to segment neuronal EM
images. (a) Approximate live wire boundary using just three seed points
(rectangle indicates a problem area). (b) Additional seed points can
improve live wire�s accuracy. (c) Instantiated from the live wire traces in
(b), the snake tolerates live wire errors and locks on cell boundary without
further user interaction. (d) Instantiated from the live wire traces in (a), the
snake ‘‘sticks’’ in the problem area, but it is easily adjusted (e) using the
mouse. (f) Snake adjustment capability illustrated by moving constraint
point 2.
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and the free point is formed, a corresponding open snake
with constraints at the seed point and the free point is
instantiated and set in motion. When the free point is cho-
sen and collected as a seed point, this open snake is merged
with the snake (if any) instantiated from previous live wire
traces. All seed points are automatically applied as con-
straints. Fig. 10 illustrates this process where ‘‘+’’ indicates
the current free point. The live wire and snake results are
shown separately in the neuronal EM images in Figs.
10(a) and (b), respectively. Since the snake is automatically
set in motion, the user may use the mouse-controlled
springs to adjust it in any problematic areas along the
snake trace (Fig. 10(c)).

6. Applying United Snakes

In this section, we apply United Snakes to several differ-
ent medical image analysis tasks, demonstrating the gener-
ality, accuracy, robustness, and ease of use of the tool.

6.1. Segmenting neuronal dendrites in EM images

A neuronal dendrite is the receiving unit of a nerve cell.
The area of contact between the dendrites of different cells
is called a synapse and is located on the dendritic spines. In
humans, morphological changes in dendritic spines are
seen with aging and with diseases that affect the nervous
system, such as dementia, brain tumors and epilepsy (Carl-
bom et al., 1994). Detailed anatomical models of dendritic
spines and their synapses will provide new insights into
their function, thus providing better opportunities to
understand the underlying causes and effects of these dis-
eases. To build such models, the dendrite must be seg-
mented from the surrounding tissue in positive electron
micrography (see Carlbom et al., 1994 for a detailed
description of how snakes are used in reconstruction of
3D nerve cell models from serial microscopy). Here, we
are interested in localizing nerve cell membranes, which
appear dark in positive micrography.

In the United Snakes system, the user begins an image
segmentation task using a live wire. An initial seed point
is placed near the boundary of the object of interest. As
the cursor, or free point, is moved around, the live wire,
or trace, is interactively displayed from the seed point to
the free point. If the displayed trace is acceptable, the free
point is collected as an additional seed point. For example,
we can capture an approximate cell boundary in Fig. 11(a)
with just three seed points.

The live wire tends to stick to the object boundary using
the seed points as a guide. The trace between the two adja-
cent seed points is frozen. The user has no further control
over these traces other than backtracking. In order to gen-
erate a more accurate result in the area indicated by a rect-
angle, more seed points may be placed as in Fig. 11(b).



Fig. 12. Dynamic lung delineation with United Snakes. (a) An automat-
ically instantiated Hermite snake. (b) United Snakes result for the left lung
with three seed points. (c) The final result for both lungs. (d) Releasing
hard constraints except those at both lung apices for lung motion tracking.
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Although the live wire boundary is somewhat jagged and
exhibits some small errors, it is in general as accurate as
manual tracing, but more efficient and reproducible.

Next, we instantiate a snake from the live wire-gener-
ated boundary and use the seed points to constrain it.
The user may select a shape function for the snake which
is suitable for the object boundary. In our cell segmenta-
tion example, if the live wire result with five seed points
is used to instantiate a finite difference snake, it is able to
tolerate the live wire errors and very quickly and accurately
lock onto the cell boundary without any further user inter-
action (Fig. 11(c)). Using the live wire result with three seed
points, the snake becomes ‘‘stuck’’ in the problematic area
(Fig. 11(d)) due to the live wire-generated boundary errors.
However, this situation can be easily remedied using the
mouse spring (Fig. 11(e)). Furthermore, as the snake is
deforming, the hard constraints may be adjusted to refine
the snake boundary. In Fig. 11(f), for example, constraint
point 2 is moved to illustrate this snake boundary adjust-
ment capability. By contrast, it is not nearly as easy to
adjust a seed point in the live wire algorithm.

In summary, the information from live wire including
the user guidance and expert prior knowledge is fully uti-
lized by the snake; the snake very quickly locks onto the
image features of interest with reasonable tolerance to mis-
takes in the live wire traces.

6.2. Dynamic chest image analysis

The aim of the dynamic chest image analysis task is to
show focal and general abnormalities of lung ventilation
and perfusion based on a sequence of digital chest fluoros-
copy frames collected over a short time period (typically
about 4 s) (Liang, 2000; Liang et al., 1997a,b, 1998, 2001,
2003). The project uses only plain X-ray fluoroscopy for
the ventilation and perfusion studies; the radiation dose
to patients is low and, unlike a nuclear medicine scan, no
preparation is required before the examination and radio-
active isotopes are unnecessary. The information gleaned
from these images is helpful in several aspects of cardiotho-
racic radiology. Diseases directly related to the parameters
being measured include pulmonary embolism, pulmonary
emphysema, cardiac failure, congenital heart disease and
other diseases (tumors, obstructive lesions or infections)
which may change pulmonary ventilation and/or perfu-
sion. The shapes and motions of the lung and heart give
an indispensable clue to ventilation and perfusion examin-
ations. Therefore, an essential first step for ventilation and
perfusion analysis is the delineation of the lungs and the
heart from each frame in a chest image sequence. The Uni-
ted Snakes system has been used for this purpose. Typically
most of the user interactions to initialize and edit the snake
are applied to the first image of the sequence only. The
resulting snake is then propagated and deformed through
the remaining frames of the image sequence.

We employ the dynamic integration mode, which was
described in Section 5.1, to delineate the lung boundaries
interactively for the first image in the sequence. Fig. 12(a)
shows the first dynamically instantiated Hermite snake
with two end points (seeds) applied as hard constraints.
Three seed points are sufficient for delineating the left lung
(Fig. 12(b)), similarly, for the right lung shown in
Fig. 12(c).

In the dynamic integration method, all seed points are
automatically applied as hard constraints. Although hard
constraints can be dynamically adjusted, for motion
tracking it is not convenient to perform hard constraint
adjustments in each frame. Therefore, the United Snakes
system allows the user to add or release hard constraints
dynamically. The edge information at the lung apex is
very weak and there is no observable motion in quiet
breath. Consequently, it is desirable to maintain a hard
constraint there. All other hard constraints are released
for lung motion tracking. Fig. 12(d) shows a Hermite
snake with the first seed imposed as hard constraint for
each lung.

We apply the snake motion tracking mechanism on the
entire image sequence, resulting in the registration of the
lung from one frame to another. Since the first seed is
applied as hard constraint, the snake can firmly stick at
the apex, although the edge information there is rather
weak. Fig. 13 illustrates the tracking result for every fifth
image.

In the case of the heart, we first employ the static inte-
gration method for heart boundary tracing with the B-
spline shape function in the first image. A least squares
approximation to the initial curve shown in Fig. 3(b) with
a cubic B-spline with 5 knots can be used as an initializa-
tion to a B-snake in Fig. 3(c). A hard constraint may be
further imposed on control polygon node 3 to effectively
bridge the gap along the heart boundary. The resulting
B-snake for the first frame (Fig. 3(d)) is then used to track
the heart motion through the whole image sequence (see



Fig. 13. Lung motion tracking result for every fifth frame.
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Fig. 14). Since, in this patient orientation, there is no signif-
icant motion with the missing cardiac boundary, it is desir-
able to apply a hard constraint on the control polygon
Fig. 14. Cardiac motion tracking
node 3. In the case of cardiac motion tracking, the hard
constraint is not only effective for single images but also
for the entire image sequence.
result for every fifth frame.



Fig. 15. Quantifying growth plates in MR images. (a) An MR growth plate image. (b) The live wire results. (c) The United Snakes results.
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6.3. Quantifying growth plates in MR images

The aim of the growth plate image analysis task is to
determine the right time for surgery for patients with
abnormal growth of the legs. To this end, the four tiny
(essentially horizontal) lines in the image (Fig. 15(a)) must
be detected to quantify the growth plate.

In this scenario, it is difficult for the user to trace an ini-
tial contour for a snake manually because of the small size
Fig. 16. Real-time isolation of the breast region in mammograms from a
3691 · 6466 pixel image using only three seed points.
of the lines and the small distance between each pair of
lines. However, live wire can be used to generate quickly
an acceptable snake initialization with just two or three
seed points as shown in Fig. 15(b). In the final results
shown in Fig. 15(c), two hard boundary conditions are
applied on each of four finite difference snakes.

6.4. Isolating the breast region in mammograms

The goal of the mammogram project is to use pattern
recognition techniques to detect abnormalities in the breast
tissue. The mammograms we are handling are very large
with a typical resolution of 3500 · 6500 pixels, requiring
about 30 MB of disk space. For effective and efficient
abnormality detection, it is essential to isolate the breast
region from the background (Ojala et al., 2000, 2001).
For instance, the original mammogram in Fig. 16 has a res-
olution of 3691 · 6466. In United Snakes, we can achieve
the real-time interactive segmentation of the breast region
on the original mammogram with only two or three seed
points using the truncated image pyramid technique pro-
posed in Section 4.2.

7. Discussion and conclusion

It is concluded in (Falcão et al., 1998) that the main
goals of research in interactive segmentation methods
are (i) to provide as complete control as possible to
the user of the segmentation process while it is being exe-
cuted and (ii) to minimize the user�s intervention and the
total user time required for segmentation. The entire seg-
mentation process may be thought of as consisting of
two tasks: recognition and delineation. Recognition deter-
mines roughly where the object (boundary) is, while
delineation defines precisely the spatial extent of the
object region/boundary in the image. For practical appli-
cations, we have found that an additional task – refine-

ment – is essential. The errors in reproducibility occur
mostly in the vicinity of seed points (Mortensen and Bar-
rett, 1999). In United Snakes, both live wire traces and
hard constraint points can be interactively adjusted for
refinement. Furthermore, dynamically instantiated snakes
can tolerate the live wire errors and thus reduce the
number of the seed points which are interactively given
by the user. In other words, United Snakes provides
more complete control to the user while further
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minimizing the user�s intervention in the interactive seg-
mentation process.

In summary, our United Snakes framework unites sev-
eral snake variants with live wire to provide a general pur-
pose tool for interactive medical image segmentation and
tracking. The union of these techniques amplifies the effi-
ciency, flexibility and reproducibility of the component
techniques. The United Snakes technique offers more con-
trol for relatively less user interaction. As it quickly locks
onto the image features of interest with reasonable toler-
ance to errors in live wire, the snake fully exploits the user
guidance and expert prior knowledge captured by the initial
live wire trace and the seed points. We have demonstrated
the generality, accuracy and robustness of United Snakes
in applications ranging from the segmentation of neuronal
dendrites in EM images, to the analysis of dynamic chest
images, to the quantification of growth plates, to the isola-
tion of the breast region in mammograms, among other
examples. We believe that United Snakes are in several ways
superior to live wire or snakes alone.

We the creators of the United Snakes, in order to form a
more perfect union of snake technologies, plan to incorpo-
rate within our framework, affine cell image decomposition
methods for snake topological adaptability (McInerney
and Terzopoulos, 2000), advanced snake motion tracking
mechanisms (Terzopoulos and Szeliski, 1992; Blake and
Isard, 1998), generic hard constraint mechanisms (Fua
and Brechbühler, 1997; Fua, 1997), automatic learning
and adaptation of shape functions to specific images, and
other snake techniques. We anticipate that such efforts will
further enhance the effectiveness of this image segmenta-
tion tool.
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Appendix A. Finite element Snakes formulation

The two coordinate functions x(s, t) and y(s, t) of the
snake v(s, t) are independent, we shall develop the finite ele-
ment formulation and the corresponding matrix equations
in terms of only one component x(s, t). An identical form
will be assumed for component y(s, t). We apply Galerkin�s
method to the Euler–Lagrange equation for x(s, t):
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which expresses the necessary condition for the snake at
equilibrium. The average weighted residual is
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where w(s) is an arbitrary test function. By performing inte-
grations by parts once for the third term and twice for the
fourth term of (A.2), we arrive at the weak formulation of
the snake model:Z L
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are the boundary conditions at the two boundary points,
s = 0 and s = L. We approximate x(s, t) as

xðs; tÞ ¼ NðsÞuðtÞ; ðA:5Þ
where N(s) = [N1(s),N2(s), . . .,Nn(s)] are the shape func-
tions and u(t) = [u1(t),u2(t), . . .,un(t)]

T are the n nodal vari-
ables (degrees of freedom) of the snake model, implying the
derivatives of x(s, t) are

o2x
ot2

¼ N€u;
ox
ot

¼ N _u;
ox
os

¼ oN

os
u;

o2x
os2

¼ o2N

os2
u. ðA:6Þ

In Galerkin�s method, the arbitrary test function w takes
the form

w ¼ Nc; ðA:7Þ
where N are the same shape functions as in (A.5), and c is
an arbitrary vector. As w is a scalar, we have

w ¼ wT ¼ cTNT. ðA:8Þ
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Substituting (A.5)–(A.8) into (A.3) yields the snake equa-
tions of motion

M€uþ C _uþ Ku� Fþ P ¼ 0; ðA:9Þ
where M is the mass matrix, C is the damping matrix, K is
the stiffness matrix, F is the force vector, and P is the
boundary forces, defined as follows:
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Eq. (A.9) gives the finite element formulation for the whole
snake. To achieve acceptable accuracy in the finite element
approximation, the integration domain should be discret-
ized into a number of small subdomains, resulting in the fi-
nite element mesh. That is, the snake contour is divided
into small segments (elements), each of which can still be
considered a snake. Applying (A.9) to an element e, we
have Me€ue þ C _ue þ Keue � Fe þ Pe ¼ 0, where Me is the
element mass matrix, Ce is the element damping matrix,
Ke is the element stiffness matrix, Fe the element force vec-
tor, and Pe the element boundary forces applied to the
boundary points of the element. Assembling the element
matrices results in the system matrix motion equation (4).
In a closed snake, the boundary forces will cancel each
other. In an open snake, the boundary conditions may be
assumed to be zero at the two ends. However, for general-
ity and clarity, we introduce g for the external force vector.

To solve the motion equation (4), we replace the time
derivatives of u with the backward finite differences

€u ¼ ðuðtþDtÞ � 2uðtÞ þ uðt�DtÞÞ=ðDtÞ2; _u ¼ ðuðtþDtÞ � uðtÞÞ=Dt;

where the superscripts denote the quantity evaluated at the
time given in the parentheses and the time step is Dt. This
yields the update formula

AuðtþDtÞ ¼ buðtÞ þ cuðt�DtÞ þ g; ðA:17Þ
where A = M/(Dt)2 + C/Dt + K and b = 2M/(Dt)2 + C/Dt
and c = �M/(Dt)2. Because A is symmetric and banded,
it can be economically saved in skyline storage, and effi-
ciently factorized uniquely into the form A = LDLT,
where L is a lower triangular matrix and D is a diagonal
matrix (Bathe and Wilson, 1976). The solution u(t + Dt) to
(A.17) is obtained by first solving Ls = bu(t) + cu(t�Dt)

with forward substitution, then LTu = D�1s with back-
ward substitution. Since A is constant, only a single fac-
torization is necessary. Therefore, at each time step only
the forward/backward substitutions are performed to
integrate the snake equations of motion forward through
time.
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