Core-Shell Nanohydrogels with Programmable Swelling for Conformance Control in Porous Media

Citation:

Zhang, L. ; Abbaspourrad, A. ; Parsa, S. ; Tang, J. ; Cassiola, F. ; Zhang, M. ; Tian, S. ; Dai, C. ; Xiao, L. ; Weitz, D. A. Core-Shell Nanohydrogels with Programmable Swelling for Conformance Control in Porous Media. ACS Applied Materials & Interfaces 2020, 12, 34217-34225. Copy at http://www.tinyurl.com/y2jcv4jh
zhang2020.pdf5.94 MB

Abstract:

Conformance control during waterflooding in an oil reservoir is utilized to redistribute water and increase the sweep efficiency and hence oil production. Using preformed gel particles can effectively redirect the flow by blocking the high-permeability zones and forcing water into low-permeability zones where the oil is trapped. However, the size of such gel particles can limit their applications deeper within the reservoir and can result in shear-induced degradation near the well bore. Here, we fabricate core–shell nanohydrogels with delayed swelling behavior; their volume increases by a factor of 200 after about 30 days in brine under reservoir conditions. We study their effect on the flow behavior in a three-dimensional porous medium micromodel consisting of randomly packed glass beads. Using confocal microscopy, we directly visualize the spatial variations of flow in the micromodel before and after nanohydrogel injection and swelling. The swollen nanohydrogels block some pores reducing the permeability of the micromodel and diverting the water into low-permeability regions. A core flood experiment further confirms that the nanohydrogels can significantly reduce the permeability of a reservoir sample and divert the fluid flow. Our results demonstrate that these core–shell nanohydrogels might be useful for flow control in porous media and can be used as a conformance control agent.

Publisher's Version