J-Aggregate-Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading

Citation:

Liu, Y. ; Yang, G. ; Jin, S. ; Zhang, R. ; Chen, P. ; Tengjisi, ; Wang, L. ; Chen, D. ; Weitz, D. A. ; Zhao, C. ‐X. J-Aggregate-Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angewandte Chemie 2020, 59, 20065-20074. Copy at http://www.tinyurl.com/y3ek8sr4
liu2020.pdf2.66 MB

Abstract:

Understanding drug‐release kinetics is critical for the development of drug‐loaded nanoparticles. We developed a J‐aggregate‐based Förster‐resonance energy‐transfer (FRET) method to investigate the release of novel high‐drug‐loading (50 wt %) nanoparticles in comparison with low‐drug‐loading (0.5 wt %) nanoparticles. Single‐dye‐loaded nanoparticles form J‐aggregates because of the high dye‐loading (50 wt %), resulting in a large red‐shift (≈110 nm) in the fluorescence spectrum. Dual‐dye‐loaded nanoparticles with high dye‐loading using FRET pairs exhibited not only FRET but also a J‐aggregate red‐shift (116 nm). Using this J‐aggregate‐based FRET method, dye‐core–polymer‐shell nanoparticles showed two release processes intracellularly: the dissolution of the dye aggregates into dye molecules and the release of the dye molecules from the polymer shell. Also, the high‐dye‐loading nanoparticles (50 wt %) exhibited a slow release kinetics in serum and relatively quick release in cells, demonstrating their great potential in drug delivery.

Publisher's Version

Last updated on 04/08/2021