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Abstract

This article gives a comprehensive treatment of preferences regarding time risk—the risk of some-

thing happening sooner or later—within the expected discounted utility model. We characterize the signs

of the discount function’s derivatives of all orders and show how these signs are decisive for time risk

preferences. We introduce the notions of prudent and temperate discounting, and illustrate their impor-

tance for economic behavior. Several applications in which an important event is “only a matter of time”

are presented. The seminal net present value rule to evaluate investment opportunities is generalized to

take into account the timing uncertainty of cash flows.
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a matter (also question) of time: “said with reference to an event or circumstance that is thought

certain to come about, or to resolve itself in a particular way, sooner or later.”—Oxford English

Dictionary1

1 Introduction

When researchers speak of decision-making under risk, they usually refer to the risk of what may happen.

The outcome at risk may be monetary or it may concern one’s health; it may affect current or future well-

being; and it may concern oneself and/or others. This article contrasts these well-studied preferences toward

outcome risk with preferences toward a fundamentally different type of risk that is about when something

may happen: time risk. While most articles on risk assume perfect knowledge about when outcomes mate-

rialize and that uncertainty is restricted to how good or bad the outcome will be, this article studies the dual

case in which the outcome is known but the time of its occurrence is not. Everyday language refers to such

outcomes as being “only a matter of time.” This article studies preferences toward the risk that this time may

be shorter or longer or, equivalently, that the outcome that is only a matter of time occurs sooner or later.

The contribution of the article is twofold. First, we give a comprehensive account of time risk preferences

within the expected discounted utility (EDU) model, by identifying and characterizing the properties of the

discount function that are decisive for choices over simple time risks (time lotteries). Second, we consider a

number of applications of these results, which illustrate the importance of time risk preferences for behavior

in situations in which a known outcome is only a matter of time.

The key idea behind the first contribution—the identification and characterization of properties of the

discount function that are decisive for decision-making under time risk—is to exploit an analogy between

time risk preferences and outcome risk preferences. Choices over time risks are determined by a comparison

of their “expected discounts.” This comparison is mathematically similar to that of “expected utilities,”

which determines choices over outcome risks. Section 2 formalizes the exact analogy between choices over

time risks and choices over outcome risks within a simple (mathematically trivial) result referred to as the

time-outcome risk duality. We use it to convert known results about utility functions to obtain yet unknown

results about discount functions. For example, using the time-outcome risk duality, one can translate Pratt’s

(1964) seminal result on comparative risk aversion to obtain a characterization of the Arrow-Pratt measure

1“time, n., int., and conj. Phrase P1 d.” Oxford English Dictionary, OED Online, Third Edition (March 2012), Oxford University
Press. Last retrieved: 26 July 2019. The hyperlink requires access to OED Online.
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of a discount function.

In general, the translation of results on outcome risk preferences into results on time risk preferences

is not straightforward. The curvature of utility functions—which determines outcome risk preferences in

expected utility (EU)—typically differs from that of discount functions. While the former are typically

increasing and concave, and maybe unbounded, the latter are typically decreasing, convex, and bounded.

These properties (and others) matter for risk preferences, and thus the translation of results using the time-

outcome risk duality often changes their behavioral implications. Moreover, for time risk preferences, it is

decisive whether the outcome that is only a matter of time is desirable or not. Depending on this desirability,

for example, convex discounting may imply a risk-seeking or a risk-averse attitude toward time risks.

The necessary tool to advance the analysis of time risk preferences beyond the basic notion of risk aver-

sion is the discount premium, which we define in analogy to the utility premium of Friedman and Savage

(1948). The discount premium measures the change in the (expected) discount factor due to making the

outcome’s time of receipt risky. As the higher-order (outcome) risk preferences of prudence (u′′′ ≥ 0 in

EU, Kimball 1990) and temperance (u′′′′ ≤ 0, Kimball 1993) complement risk aversion in important ways,

we define and investigate the higher-order time risk preferences of prudent discounting and temperate dis-

counting. The definitions are based on preferences over simple risk apportionment lottery pairs (Eeckhoudt

and Schlesinger 2006) and can be characterized through conditions on the signs of the discount functions’

(higher-order) derivatives. We observe that the commonly used discount functions are decreasing with

derivatives that alternate in sign, which, in the case of desirable outcomes, imply risk-seeking (ρ′′ ≥ 0),

prudent (ρ′′′ ≤ 0), and intemperate (ρ′′′′ ≥ 0) discounting. In analogy to Caballé and Pomansky’s (1996)

mixed (outcome) risk preferences, we call the time risk preferences implied by these discount functions

anti-mixed. We characterize anti-mixed time preferences through a preference for properly apportioning

fixed and risky delays across possible states of nature, in a consistent manner, similarly to the utility case

studied in Eeckhoudt et al. (2009) and Crainich et al. (2013).

Per the second contribution of the article, we illustrate the relevance of time risk preferences as such

(and, in particular, that of the new properties of prudence, temperance, anti-mixedness, etc.) through a

number of applications. We show that time risk preferences are crucial for behavior in situations in which

an important event (e.g., a large payment, a change in one’s health, or any other important personal event)

is only a matter of time. Discount prudence is related to precautionary behavior toward time risk, and both

discount prudence and discount temperance are shown to be important for investment decisions that involve
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an uncertain time of repayment. We also give a new characterization of exponential discounting, through

time risk preferences. Moreover, we provide a generalization of the seminal net present value (NPV) rule

that takes into account that, in reality, future cash flows and other outcomes may occur sooner or later.

Further applications, generalizations, and limitations of our results are discussed at the end of the article.

This article contributes to the literature on risk and time preferences by focusing on preferences toward

time risks. We are concerned with “the study of time as the duration that a person has to wait until she

receives an outcome in intertemporal choice (discounting)” (Abdellaoui and Kemel 2014) [p. 1844], and

consider the case in which this receipt time is risky. This study of time is not to be confused with that of time

as a resource.2 Let us also clarify how this article relates to the topic of sequential resolution of uncertainty

(Kreps and Porteus 1978). The uncertainty whose sequential resolution is studied has traditionally concerned

outcome uncertainty (e.g., “When will I get to know how large my year-end bonus will be?”). But, one may

likewise study the sequential resolution of time risk (e.g., “When will I get to know when my $10,000 bonus

will be paid?”). In line with the few existing articles on time risks (discussed next), we focus on the case in

which the resolution of risk is immediate.

On the theory side, the first analysis of time risk appears in Chesson and Viscusi (2003), who show

that exponential discounting implies time risk-seeking toward desirable outcomes. For that case, Onay

and Öncüler (2007) prove that time risk-seeking, in the sense of every risk being preferred over its expected

value, holds for any convex discount function. The authors further analyze time risk aversion in a model with

probability weighting and consider the case of undesirable outcomes. DeJarnette et al. (2018) study time risk

aversion and show that, within EDU, it is incompatible with a new property called stochastic impatience.

This incompatibility remains in much more general models than EDU. DeJarnette et al. (2018) further

provide an axiomatization of EDU preferences over time risks when discounting is exponential. Chesson

and Viscusi (2003), Onay and Öncüler (2007), and DeJarnette et al. (2018) all provide empirical (survey

or experimental) evidence on time risk aversion. Ebert (2018) experimentally investigates prudent and

temperate discounting, complementing analogous evidence on outcome prudence and outcome temperance

(e.g., Deck and Schlesinger 2010, Ebert and Wiesen 2011, and Maier and Rüger 2011). The current article,

by going beyond the property of time risk-seeking/the convexity of the discount function, presents a more

2Leclerc et al. (1995), Abdellaoui and Kemel (2014), Festjens et al. (2015), and Noussair and Stoop (2015), among others,
conduct experiments in which the outcome of subjects’ decisions is waiting shorter or longer in a room without the possibility to do
anything. In that case, time is an outcome and choices over risks in waiting time identify the utility of time. Choices over time risks
instead identify discounting (of a fixed amount of utility). Recently, Abdellaoui et al. (2018) have conducted the first experiment
that involves both types of “time” and elicit preferences toward the delay of outcome time (i.e., waiting time).
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comprehensive treatment of time risk preferences within EDU. Moreover, it is the first to study behavioral

implications of time risk preferences alongside various economic models.

2 The time-outcome risk duality

In this short section, we introduce notation and clarify the analogy between time risk and outcome risk

preferences. That is, we explain the “channel” through which known results about utility functions can

be given a correspondence in the realm of discount functions. Throughout the article consider a strictly

increasing utility function u : X −→ (−∞, ∞) that maps outcomes x (e.g., monetary prizes, health states,

etc.) taken from a non-empty ordered set X to utility levels u(x). For an element x0 ∈ X , u(x0) = 0. Let

ρ : [0, ∞) −→ (0, 1] with ρ(0) = 1 denote a smooth and strictly decreasing discount function, mapping

dates t to discount factors ρ(t). Let ∆ be the set of simple lotteries on [0, ∞)×X . Consider preferences �

over elements (τ̃, x̃) ∈ ∆ that are represented by a functional U given by

U(τ̃, x̃) := E[ρ(τ̃)u(x̃)], (1)

referred to as the decision-maker’s (DM’s) expected discounted utility (EDU). For most of the article, we

are concerned with the evaluation of more specific elements of ∆. Let (τ, x) ∈ ∆ denote the degenerate risk

that yields the certain outcome x at the certain time τ, referred to as a delayed outcome. It is evaluated as

U(τ, x) = ρ(τ)u(x). Taking this riskless case as a benchmark, note that a large body of literature studies

the generalization in which the outcome that is paid at the certain time τ is risky. Indicating the riskiness of

an outcome by x̃, the resulting (delay-certain) outcome risk (τ, x̃) ∈ ∆ is evaluated as

U(τ, x̃) = E[ρ(τ)u(x̃)]. (2)

The DM prefers the delay-certain outcome risk (τ, x̃1) over the delay-certain outcome risk (τ, x̃2)—note

that they are dated to the same time τ—if and only if

U(τ, x̃1) ≥ U(τ, x̃2)⇐⇒ρ(τ)E[u(x̃1)] ≥ ρ(τ)E[u(x̃2)]

⇐⇒E[u(x̃1)] ≥ E[u(x̃2)]. (3)

5

 Electronic copy available at: https://ssrn.com/abstract=2674160 



We see that the delay τ and the discount function ρ(·) drop out of the inequality. It follows that, in EDU,

preferences over risky outcomes dated to the same certain time are determined by the curvature of utility

alone.

Now we go back to the “delay-certain, certain outcome” (τ, x) and consider the mathematically symmet-

ric generalization of making τ risky, thus denoting it by τ̃, while letting the outcome x remain certain. The

resulting object (τ̃, x) ∈ ∆ is an (outcome-certain) time risk or an (outcome-certain) delay risk for which

the amount to be received is certain but the time at which it is received is not. In other words, the receipt of

x is only a matter of time, and it is evaluated as follows:

U(τ̃, x) = E[ρ(τ̃)u(x)]. (4)

The DM prefers the outcome-certain delay risk (τ̃1, x) over the outcome-certain delay risk (τ̃2, x)—note

that they yield the same outcome x—if and only if

U(τ̃1, x) ≥ U(τ̃2, x)⇐⇒u(x)E[ρ(τ̃1)] ≥ u(x)E[ρ(τ̃2)]

and, therefore:

Observation 1. (Time-outcome risk duality). Consider EDU preferences � over delay-certain outcome

risks (τ, x̃1) and (τ, x̃2) and certain-outcome delay risks (τ̃1, x) and (τ̃2, x), respectively. We have

(τ, x̃1) � (τ, x̃2)⇐⇒ E[u(x̃1)] ≥ E[u(x̃2)] and (i)

(τ̃1, x) � (τ̃2, x)⇐⇒


E[ρ(τ̃1)] ≥ E[ρ(τ̃2)] if u(x) ≥ 0

E[ρ(τ̃1)] ≤ E[ρ(τ̃2)] if u(x) < 0.
(ii)

Observation 1 illustrates that choices over bivariate (certain-outcome) time risks are determined similarly

to choices over univariate, atemporal outcome risks. The former are determined by comparing expected dis-

counts, while the latter are determined by comparing expected utilities. Due to the mathematical similarity

of these comparisons, we can utilize our existing knowledge about outcome risk preferences to get a better

understanding of time risk preferences.

There are also, however, differences. Due to the different curvatures of discount and utility functions,
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choices over time risks may be very different from choices over outcome risks. An obvious difference is

the need for a case distinction between desirable (u(x) > 0) and undesirable (u(x) < 0) outcomes in

equivalence (ii), which is unique to the study of time (risk) preferences. This difference is a consequence

of the fact that negative utility can have important meaning, while discount factors are safely assumed to be

positive. We first study the case u(x) > 0 and turn to the case u(x) < 0 in Section 5.

3 A behavioral characterization of time risk preferences when outcomes are

desirable

This section characterizes risk-taking behavior over (outcome-certain) time risks (τ̃, x) ∈ ∆ when u(x) >

0. We define risk-averse, prudent, and temperate discounting in analogy to Eeckhoudt and Schlesinger

(2006) through preferences over simple and intuitive “time risk apportionment” lotteries, and show that

these behavioral definitions are equivalent to signing various derivatives of the discount function. We show

that the time risk preferences of commonly used “anti-mixed” discount functions can be given a simple

intuition in terms of apportioning fixed and risky delays across states of nature.

3.1 Decreasing discount functions

Consider a pair of delayed outcomes (i.e., degenerate outcome-certain time risks) (τ̃(1)
A , x) := (s, x) and

(τ̃
(1)
B , x) := (l, x) that, at respective times 0 ≤ s < l < ∞, yield the same certain outcome x. The

superscript “(1)” is used to indicate that these delayed outcomes can be used to characterize first-order time

“risk” preferences, that is, the first derivative of the discount function. Later subsections will define lotteries

with higher superscripts since they will be shown to characterize higher-order time risk preferences, that is,

the signs of higher-order derivatives of the discount function. As both first-order lotteries are degenerate,

they may be depicted as

(τ̃
(1)
A , x) (s, x)

1
(τ̃

(1)
B , x) (l, x).

1

Indeed, under the smoothness of the discount function assumed throughout, it follows from Observation 1

that ρ′(τ) ≤ 0 for all τ ≥ 0, if and only if (τ̃(1)
A , x) � (τ̃

(1)
B , x) for all s, l.

7

 Electronic copy available at: https://ssrn.com/abstract=2674160 



3.2 Risk-averse discounting

Onay and Öncüler (2007) and DeJarnette et al. (2018) have established the important result that the con-

vexity of the discount function implies weak risk-seeking for outcome-certain time risks. Note that, with

Observation 1 in mind, this result also follows from Rothschild and Stiglitz (1970) [Theorem 2] for general

mean-preserving spreads. Indeed, Rothschild and Stiglitz (1970) [footnote 3] note that “It might be argued

that we should limit our discussion to increasing concave functions. Imposing this restriction would gain

nothing and would destroy the symmetry of the results.” Our application of their result to decreasing and

convex discount functions makes practical use of this symmetry.

Next, we explain the sense in which a convex discount function relates to a preference for combining

good with good. Let [τ̃1; τ̃2] denote the risk that yields random variables τ̃1 and τ̃2 with equal probability.

For some positive delay d > 0, consider the time risks (τ̃
(2)
A , x) := ([s + d; l + 0], x) and (τ̃

(2)
B , x) :=

([s + 0; l + d], x); that is,

(τ̃
(2)
A , x)

(s + d, x)

(l + 0, x)

1
2

1
2

(τ̃
(2)
B , x)

(s + 0, x)

(l + d, x).

1
2

1
2

Since less delay is better, as before, l is bad compared to the good s. Likewise, d is bad compared to the

good 0, which is depicted in the down-state of lottery (τ̃
(2)
A , x) precisely to make this connection salient. In

this sense, (τ̃(2)
A , x) � (τ̃

(2)
B , x) is consistent with a preference for combining good with bad in each of its

two states of nature, while (τ̃
(2)
B , x) � (τ̃

(2)
A , x) is consistent with a preference for combining good with

good (in its up-state) as well as bad with bad (in its down-state). For the sake of brevity, in the following

we will omit the “as well as bad with bad” part when unnecessary. By Observation 1, the DM prefers to

combine good with good in the above situation if and only if

1
2

ρ(s + d) +
1
2

ρ(l) ≤ 1
2

ρ(s) +
1
2

ρ(l + d)⇐⇒ ρ(s + d)− ρ(s) ≤ ρ(l + d)− ρ(l).

Dividing by d and letting d approach zero implies ρ′(s) ≤ ρ′(l) so that for l close to s, we obtain ρ′′(s) ≥ 0,

that is, convex discounting. This result motivates the following definition of risk-averse (and risk-seeking)

discounting:3

3It is easily observed that a preference for combining good with bad implies a concave rather than a convex discount function,
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Definition 1. (Risk-averse discounting). A DM exhibits risk-averse (risk-seeking) discounting if and only if

(τ̃
(2)
A , x) � (�)(τ̃(2)

B , x) for all s, l, d.

3.3 Prudent discounting

Let t̃1 and t̃2 denote independent zero-mean delay risks, and throughout let s, l, t̃1 and t̃2 be such that the

support of total delay remains positive. Let (τ̃(3)
A , x) := ([s + t̃1; l + 0], x) and (τ̃

(3)
B , x) := ([s + 0; l +

t̃1], x), that is,

(τ̃
(3)
A , x)

(s + t̃1, x)

(l + 0, x)

1
2

1
2

(τ̃
(3)
B , x)

(s + 0, x)

(l + t̃1, x).

1
2

1
2

(τ̃
(3)
A , x) � (τ̃

(3)
B , x) implies that the DM prefers an unavoidable zero-mean delay risk in the state in which

delay is good. Consider a DM who prefers to combine good with good. As we have seen in the previous

subsection, her discount function must be convex so that she is delay risk-seeking. Therefore, an additional

zero-mean delay risk is good relative to zero additional delay. Accordingly, she prefers (τ̃
(3)
A , x), which

combines the good short delay s with the good zero-mean delay risk in the up-state, over (τ̃(3)
B , x), which

has one good (and one bad) in each state. Let us compare this behavior with that of a DM who prefers to

combine good with bad. His discount function is concave, which makes him time risk-averse, and thus a

zero-mean delay risk is considered bad. A preference for combining good with bad, therefore, also implies

a preference for (τ̃(3)
A , x) over (τ̃(3)

B , x). As in the utility paradigm (Crainich et al. 2013), we define prudent

discounting as the time risk lottery preference that follows from both the preference for combining good

with good and the preference for combining good with bad. Prudent discounting means that an outcome is

discounted less upon increasing delay risk when current delay is low as compared to when it is high.

Definition 2. (Prudent discounting). A DM exhibits prudent (imprudent) discounting if and only if (τ̃(3)
A , x) �

(�)(τ̃(3)
B , x) for all s, l, t̃1.

We now establish an equivalence between prudent discounting and the sign of the third derivative of

the discount function. To this means, we define the discount premium in analogy to the utility premium of

which is incompatible with the discount function being positive (if defined on the whole positive real line), as noted by DeJarnette
et al. (2018). While the subsequent analysis goes through irrespectively of this observation, preferences for combining good with
bad may be regarded more important in the case of undesirable outcomes; see Section 5.
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Friedman and Savage (1948) as the change in the (expected) discount factor at time t that results from taking

the zero-mean time risk t̃1,

Dt̃1
(t) := E[ρ(t + t̃1)]− ρ(t).

From our previous discussion, the discount premium is positive if and only if the discount function is convex.

From Observation 1, the preference for (τ̃(3)
A , x) over (τ̃(3)

B , x) is equivalent to

1
2

E[ρ(s + t̃1)] +
1
2

ρ(l) ≥ 1
2

ρ(s) +
1
2

E[ρ(l + t̃1)]⇐⇒ Dt̃1
(s) ≥ Dt̃1

(l),

which is true for all s < l if and only if the discount premium is decreasing: D′t̃1
(s) ≤ 0. We have

D′t̃1
(s) ≤ 0⇐⇒ E[ρ′(s + t̃1)]− ρ′(s) ≤ 0,

which holds by Jensen’s inequality if and only if ρ′ is concave at s; that is, ρ′′′(s) ≤ 0. Therefore, discount

prudence is characterized by a negative third derivative, which is opposite to the case of utility prudence,

and ultimately a consequence of the fact that discount functions are decreasing while utility functions are

increasing.

3.4 Temperate discounting

Fourth-order discounting preferences can be characterized through preferences over the lotteries (τ̃(4)
A , x) :=

([s + t̃1 + 0; s + 0 + t̃2], x) and (τ̃
(4)
B , x) := ([s + t̃1 + t̃2; s + 0 + 0], x); that is,

(τ̃
(4)
A , x)

(s + t̃1 + 0, x)

(s + 0 + t̃2, x)

1
2

1
2

(τ̃
(4)
B , x)

(s + t̃1 + t̃2, x)

(s + 0 + 0, x).

1
2

1
2

If the DM prefers to combine good with good (good with bad), then by Section 3.2 the zero-mean risks

are good (bad) relative to the zero-delays. Accordingly, the former prefers (τ̃(4)
B , x), while the latter prefers

(τ̃
(4)
A , x). We define temperate discounting as the trait that follows from a preference for combining good

with bad.
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Definition 3. (Temperate discounting). A DM exhibits temperate (intemperate) discounting if and only if

(τ̃
(4)
A , x) � (�)(τ̃(4)

B , x) for all s, t̃1, t̃2.

Temperance (intemperance) means that time risks are mutually aggravating (mutually enticing) so that

the DM prefers to disaggregate (aggregate) them across states of nature (Kimball 1993). Similarly to the

previous calculations, intemperate discounting can be shown to be equivalent to ρ′′′′ ≥ 0.4

3.5 Higher orders and anti-mixed discounting

We showed that a preference for combining good with good implies that DMs are risk-seeking (ρ′′ ≥ 0),

prudent (ρ′′′ ≤ 0), and intemperate (ρ′′′′ ≥ 0) toward time risk. A preference for combining good with bad

implies that DMs are risk-averse (ρ′′ ≤ 0), prudent (ρ′′′ ≤ 0), and temperate (ρ′′′′ ≤ 0). By adapting the

lottery nesting procedure outlined in Eeckhoudt and Schlesinger (2006), these results can be extended to

characterize the signs of even higher derivatives of the discount function.5

What are the signs of the derivatives of practically relevant (decreasing) discount functions? For dis-

counting that is exponential (Samuelson 1937), Herrnstein’s (1961) ρ(t) = t−1, actually hyperbolic (Harvey

1986, 1995; Mazur 1987), generalized hyperbolic (Loewenstein and Prelec 1992), and for the continuous-

time extension by Harris and Laibson (2013) of quasi-hyperbolic (Phelps and Pollak 1968; Laibson 1997),

the signs of derivatives alternate in sign.6 As Caballé and Pomansky (1996) call (the risk preferences im-

plied by) an increasing utility function with derivatives alternating in sign mixed (risk-averse) let us call

(the risk preferences implied by) a decreasing discount function with derivatives alternating in sign anti-

mixed (risk-averse). In the title of their article, Brockett and Golden (1987) have noted that “[a]ll commonly

4By Observation 1, intemperate discounting is equivalent to

1
2

E[ρ(s + t̃1)] +
1
2

E[ρ(s + t̃2)] ≤
1
2

E[ρ(s + t̃1 + t̃2)] +
1
2

ρ(s)

⇐⇒ E[ρ(s + t̃1)]− ρ(s) ≤ E[ρ(s + t̃2 + t̃1)]−E[ρ(s + t̃2)]⇐⇒ Dt̃1
(s) ≤ E[Dt̃1

(s + t̃2)].

By Jensen’s inequality, the last inequality is equivalent to D′′t̃1
(s) ≥ 0. We have

D′′t̃1
(s) ≥ 0⇐⇒ E[ρ′′(s + t̃1)]− ρ′′(s) ≥ 0,

and invoking Jensen’s inequality once more yields that ρ′′ itself must be convex at s, that is, ρ′′′′(s) ≥ 0.
5The details of this exercise are left for future research. Lajeri-Chaherli (2004) defines edginess as the fifth derivative of the

utility function being positive. During his talk at the Conference in Honor of Louis Eeckhoudt in 2011, Miles Kimball suggested
that the term “bentness” refers to a negative sixth derivative of the utility function. Harris Schlesinger, then, remarked that earlier
that day “someone at breakfast” already had suggested the term “kimballesque.”

6Bleichrodt et al. (2009) offer a comprehensive overview of parametric forms of discount functions. The two new discount
functions proposed in that article also have derivatives of alternating sign if one assumes decreasing impatience. Ebert et al. (2016)
offer further results and interpretations of discount functions whose derivatives alternate in sign.
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used utility functions” are mixed risk-averse; above we have noted that commonly used discount functions

are anti-mixed risk-averse. And while Eeckhoudt et al. (2009) have shown that the intuition behind mixed

risk aversion is (i) more (outcome) is better and (ii) a preference for combining good with bad, we have

shown that anti-mixed discounting of desirable outcomes is consistent with (i) less (delay) is better and (ii)

a preference for combining good with good.

4 Applications

4.1 Preferences toward skewed and leptokurtic time risks

This section illustrates that prudent and temperate discounting can determine preferences toward skewed

and leptokurtic delay risks; whether the DM is delay risk-seeking or delay risk-averse plays no role in this

regard. First, consider the prudence lottery pair from Section 3.3 with s = 1, l = 2, and zero-mean risk

t̃ = [1;−1]; that is, (τ̃(3)
A , x) = ([1 + [1;−1]; 2], x), and (τ̃

(3)
B , x) = ([1; 2 + [1;−1]], x). After reducing

these compound lotteries, it follows that discount prudence (ρ′′′ ≤ 0) implies the preference

(τ̃
(3)
A , x)

(0, x)

(2, x)

1
4

3
4

� (τ̃
(3)
B , x)

(3, x)

(1, x).

1
4

3
4

It is easy to verify that the delays of both choices have equal mean and variance. (τ̃
(3)
A , x), however, is

left-skewed, while (τ̃
(3)
B , x), is right-skewed. The example above was chosen so as to recover a lottery

pair of the type proposed in Mao (1970) and Ebert and Wiesen (2011), which—in the outcome risk case—

these authors used to test skewness preference. While outcome prudence relates to a preference for positive

skewness, discount prudence relates to a preference for negative skewness—another consequence of the fact

that more outcome is good, while more delay is bad. Noting further that the mean of both delays is 1.5,

the negatively skewed (τ̃
(3)
A , x) is lottery-like in the sense that it features a much shorter delay with low

probability and a mildly larger delay with high probability. Therefore, both discount and outcome prudence

are related to a preference for lottery-like risks.

Following Menezes and Wang (2005), one can show that the temperance lotteries are outer risk increas-

es/contractions of one another, meaning that they have equal mean, variance, and skewness but differ in

their kurtosis. Just as a convex discount function implies risk-seeking, intemperate discounting implies
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outer risk-seeking. As an example, an intemperate DM prefers (τ̃(4)
B , x) = ([2 + [1;−1] + [1;−1]; 2]], x)

over the less leptokurtic (τ̃(4)
A , x) = ([2 + [1;−1]; 2 + [1;−1]], x) :

(τ̃
(4)
A , x)

(1, x)

(3, x)

1
2

1
2

� (τ̃
(4)
B , x)

(0, x)

(4, x).

1
8

1
8

(2, x)
6
8

4.2 Investment under delay risk

Let X = [0, ∞). Assume the support of τ̃ to be contained in {1, . . . , T} and consider an investor with

differentiable, strictly increasing, and concave per-period utility u with u(0) = 0, who derives utility from

consumption in periods {0, 1, . . . , T}. Consider an investment opportunity that is characterized by (τ̃, x) ∈

∆, paying off x > 0 for each unit invested when exiting the company at the yet uncertain time τ̃. Without

investing, his consumption in each period is c > 0. By giving up α ∈ [0, c] of current (t = 0) consumption,

the DM can increase her consumption to αx in the yet unknown exit period τ̃. Accordingly, his objective is

to maximize

V(α) = u(c− α) +
T

∑
τ=1

P[τ̃ = τ]

(
T

∑
t=1,t 6=τ

ρ(t)u(c) + ρ(τ)u(c + αx)

)
,

which can be rewritten as

V(α) = u(c− α) +
T

∑
τ=1

P[τ̃ = τ]

((
T

∑
t=1

ρ(t)− ρ(τ)

)
u(c) + ρ(τ)u(c + αx)

)

= u(c− α) +
T

∑
τ=1

P[τ̃ = τ]

(
T

∑
t=1

ρ(t)

)
u(c) +

T

∑
τ=1

P[τ̃ = τ] (−ρ(τ)u(c) + ρ(τ)u(c + αx))

= u(c− α) + u(c)
T

∑
t=1

ρ(t) + E[ρ(τ̃)] (u(c + αx)− u(c)) . (5)

The first-order condition is given by

V ′(α) = −u′(c− α) + E[ρ(τ̃)]xu′(c + αx) = 0.

13

 Electronic copy available at: https://ssrn.com/abstract=2674160 



Let us compare the investment decision under different payout time distributions τ̃i and denote the corre-

sponding objective functions by Vi and the optimal investment level by α∗i (i = A, B). For arbitrary α, since

x and marginal utility are positive,

E[ρ(τ̃A)] ≤ E[ρ(τ̃B)]⇐⇒ V ′A(α) ≤ V ′B(α) =⇒ α∗A ≤ α∗B,

where the last conclusion follows from the fact that the V ′i are decreasing so that V ′A(α) intersects with

α = 0 at a smaller value of α. Therefore, the first-order condition of the maximization problem is fulfilled

at a smaller value of α. If ρ is anti-mixed, the DM will prefer the project whose exit time is earlier than (a

mean-preserving spread of, a downside risk decrease of, an outer risk increase of) that of the comparison

project because his discount function is decreasing (risk-seeking, prudent, intemperate).

4.3 Comparative time risk-seeking and the Arrow-Pratt measure of a discount function

For t ≥ 0 consider a time risk (τ̃, x) ∈ ∆ such that t + τ̃ ≥ 0 and E[τ̃ = 0]. The delay risk premium πd of

(τ̃, x) is defined as the solution to

U(t− πd, x) = U(t + τ̃, x)⇐⇒ ρ(t− πd) = E[ρ(t + τ̃)], (6)

where the equivalence is a consequence of Observation 1. We observe that the risk premium πd ≡ πd(t)

is a function of time only (independent of the size of the outcome). Assuming convex discounting, the

interpretation of the delay risk premium is as follows. Receiving the desirable outcome x at time t− πd(t)

for sure is as good as waiting the additional time πd(t) to receive the outcome sooner or later, that is, with

the additional good delay risk τ̃. Following the analysis of de Finetti (1952), Pratt (1964), and Arrow (1965),

for small risks τ̃ with variance σ2, we obtain the approximation

πd(t) ≈
1
2

σ2Aρ(t) (7)

where Aρ(t) = − ρ′′(t)
ρ′(t) denotes the Arrow-Pratt measure of the discount function ρ, that is, the coefficient

of absolute delay-risk-seeking. For anti-mixed discount functions Aρ(t) > 0 so that also πd(t) > 0. The

time t Arrow-Pratt measure of a discount function thus describes the DM’s willingness to wait (WTW) until

time t for a desirable outcome in order to receive it at an uncertain rather than at a certain time. We state the
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following result without proof, because with Observation 1 in mind it is a straightforward adaptation from

results in Pratt (1964); see also Gollier (2001) [p. 20–21].

Proposition 1. (Comparative time risk-seeking toward desirable outcomes). Consider DMs i = 1, 2 with

discount functions ρi, corresponding Arrow-Pratt measures Ai(t), and delay risk premia πd,i for the time

risk τ̃. DM 2 is more time risk-seeking than DM 1 in the sense of the following three equivalent statements:

A2(t) ≥ A1(t), ∀t, x. (I)

DM 2 accepts all time risks t̃ at t that DM 1 accepts at t, ∀t, x. (II)

DM 2 is willing to wait longer for time risk τ̃ at t than DM 1: πd,2 ≥ πd,1, ∀t, x. (III)

We close this section by analyzing the connection between discount prudence and decreasing absolute

time risk-seeking (DATRS); that is,

∂

∂t
A(t) ≤ 0⇐⇒ ρ′′′(t)ρ′(t) ≥ (ρ′′(t))2. (8)

Since ρ′ < 0, it follows that prudent discounting (ρ′′′ ≤ 0) is necessary for DATRS. This is similar to

atemporal EU, where, since u′ > 0, outcome prudence (u′′′ ≥ 0) is necessary for decreasing absolute risk

aversion (DARA).

4.4 Precautionary patience: Prudent behavior toward delay risk

Consider a DM who receives two payments of size x (each granting utility u(x) > 0), one at time s ≡ 0

and one at time l > 0. Consider the opportunity to delay the first payment by d̂ days in order to receive the

second payment d̂ days sooner. The DM’s problem is given by

max
d̂∈[0,l]

ρ(d̂)u(x) + ρ(l − d̂)u(x).

Assuming that ρ is convex, corner solutions prevail. The DM is thus indifferent between d̂ = 0 and d̂ = l,

each of which grants EDU u(x)(ρ(0) + ρ(l)).7 Intuitively, since the DM is time risk-seeking, she wants

7We assume that for d̂ = l
2 , the DM frames the payments narrowly (i.e., receives utility u(x) + u(x)). Alternatively, if

X = [0, ∞), we could assume that u is concave so that u(2x) ≤ u(x) + u(x). Further, for simplicity we ignore the issue of
negative time, which is easily resolved by replacing current time s = 0 with some s > 0 and restricting the support of t̃ to [−s, ∞).
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both payments to be as far apart from each other as possible (and she doesn’t care whether she receives the

“first” payment of x now and the “second” payment of x later at l, or vice versa).

Next, suppose that the time of when the future payment is made becomes uncertain, so that l is replaced

by l + t̃, where t̃ is some zero-mean risk. The DM’s problem becomes

max
d̂∈[0,l]

u(x)
(

ρ(d̂) + E[ρ(l − d̂ + t̃)]
)

.

The convexity of ρ again excludes interior solutions. For d̂ = 0, the DM’s utility is given by

u(x) (ρ(0) + E[ρ(l + t̃)]) ,

while for d̂ = l it is given by

u(x) (ρ(l) + E[ρ(t̃)]) .

The DM strictly prefers d̂ = l over d̂ = 0 if

1
2

ρ(l)u(x) +
1
2

E[ρ(t̃)]u(x) >
1
2

ρ(0)u(x) +
1
2

E[ρ(l + t̃)]u(x),

which describes a (strict) prudence lottery preference (τ̃
(3)
A , x) over (τ̃(3)

B , x); see Section 3.3. Therefore,

the DM is willing to delay a delay-certain payment in order to receive a time-uncertain payment sooner if

and only if she is a strictly prudent discounter (ρ′′′ < 0). Recall that strict utility prudence (u′′′ > 0) implies

precautionary saving in EDU, that is, the willingness to increase saving toward uncertain states of nature

(e.g., Crainich et al. 2013). Therefore, both discount- and utility-prudent behavior is precautionary in the

sense that it results in a better constitution of the DM (higher wealth and less delay, respectively) in the state

that is risky.
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5 The case of undesirable outcomes

5.1 The dual discount function

Given a discount function ρ, let us define the dual discount function by ρ̂(t) := 1− ρ(t). While the discount

function describes what remains of utility as time goes by (i.e., the discount factor), the dual discount

function describes the corresponding discount. For negative utility, a larger discount is better. In line with

this idea, the case u(x) < 0 of equivalence (ii) in Observation 1 can be rewritten as

(τ̃1, x) � (τ̃2, x)⇐⇒ E[ρ̂(τ̃1)] ≥ E[ρ̂(τ̃2)]. (9)

For anti-mixed discount functions ρ, the dual discount function ρ̂ is mixed. Therefore, because the shape of

ρ̂ is the same as that of a “typical” u and because the right-hand inequality in equation (9) is in the same

direction as that in equivalence (i) in Observation 1, delay risk preferences toward undesirable outcomes

are even more similar to the well-studied outcome risk preferences than they were in the case of desirable

outcomes. The anti-mixed discounting of undesirable outcomes that are only a matter of time is risk-averse,

prudent, and temperate, and consistent with (i) more delay is better and (ii) a preference for combining good

with bad; see Eeckhoudt et al. (2009) for details.

5.2 Exponential discounting of undesirable outcomes that are only a matter of time

This section focuses on the important special case of exponential discounting and offers a new characteri-

zation thereof in terms of time risk preferences. For ρ(t) = e−δt with δ > 0, the dual discount function is

given by ρ̂(t) = 1− e−δt; see Figure 1 for an illustration. We observe that ρ̂ is structurally identical to the

well-known exponential (constant absolute risk-averse, CARA) utility function. From Observation 1 it fol-

lows that everything we know about CARA risk preferences applies exactly for time risk preferences toward

undesirable outcomes when discounting is exponential. In particular, we obtain a new characterization of

exponential discounting: An individual is an exponential discounter if and only if her time risk preferences

toward the arrival of an undesirable outcome exhibit constant absolute time risk aversion (CATRA).

How is CATRA to be interpreted? The Arrow-Pratt measure at time t (i.e., the measure of absolute time

risk aversion at time t; recall Section 4.3) now describes the DM’s willingness to accelerate the occurrence

of the undesirable outcome in order to receive it at a certain rather than at an uncertain date. CATRA thus
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Figure 1: The exponential (dual) discount function

ρ(t) = e−0.05t

ρ̂(t) = 1− e−0.05t

0 10 20 30 40
0

0.5

1

t

Notes. Figure 1 plots an exponential discount function ρ(t) with a discount rate of δ = 0.05 and the cor-
responding dual discount function ρ̂ = 1− ρ(t). The dual discount function is mathematically identical to
CARA utility u over consumption x with the coefficient of absolute risk aversion being equal to the discount
rate: u(x) = 1− e−0.05x. For that reason, risk preferences toward the delay of an undesirable outcome are
like outcome risk preferences with constant absolute risk aversion.

means that the willingness to accelerate is calendar-time independent. As an example, consider a DM who

has a “skeleton in the closet,” knowing that it will come out sooner or later. If and only if the DM discounts

exponentially, his willingness to accelerate the coming out in exchange for removing the uncertainty thereof

is independent of whether he expects the coming out to be in, say, one or two years’ time.

5.3 Willingness to pay (WTP) and net present value (NPV) under time risk

The net present value (NPV) rule is the most widely used tool in investment analysis. The NPV rule says

that an investment to prevent a future loss should be made if and only if the cost of the investment is lower

than its NPV. The NPV of avoiding a loss coincides with the willingness to pay (WTP) to avoid the loss

if the social planner is outcome risk-neutral. In this section, we study a social planner’s WTP to avoid an

unavoidable loss that is only a matter time. We study how this WTP changes under different time risks and

discuss a generalized version of the seminal NPV formula that incorporates time risk.

Let X = [0, ∞). Consider a social planner who experiences strictly increasing per-period utility u of

baseline consumption c > 0 today (at t = 0) as well as in each future period t = 1, 2, . . . , T, where u(0) =

0. She faces a non-degenerate time risk (τ̃2, L) ∈ ∆, with the support of τ̃2 contained in {1, 2, . . . , T} and

0 < L < c, so that consumption in the yet unknown period τ̃2 is reduced to c− L. Suppose, first, that the
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social planner cannot prevent the loss, but she can invest today in a technology that will transform τ̃2 into

τ̃1. Assume that the support of τ̃1 is also contained in {1, 2, . . . , T} and that all time risks considered have

an integer expectation. (Then, τ̃1 ≡ E[τ̃2] is the special case in which time risk is removed entirely.) Let

v(τ) :=
T

∑
t=1,t 6=τ

ρ(t)u(c) + ρ(τ)u(c− L), (10)

denote the (not necessarily exponentially) discounted utility of future consumption (i.e., of consumption

from period t = 1 onward), given that the loss is realized at time τ. The planner’s WTP for the technology

that transfers τ̃2 into τ̃1, denoted by π, is defined implicitly via

u(c− π)+E[v(τ̃1)] = u(c) + E[v(τ̃2)]. (11)

Rearrangements similar to those detailed in the derivation of equation (5) yield

E[ρ(τ̃2)]−E[ρ(τ̃1)] =
u(c)− u(c− π)

u(c)− u(c− L)
. (12)

We denote the right-hand side of this equality by ∆u(π) = u(c)−u(c−π)
u(c)−u(c−L) , which is a strictly increasing

one-to-one mapping of π. Moreover, ∆u(π) > 0⇐⇒ π > 0, and therefore

E[ρ(τ̃2)] > E[ρ(τ̃1)]⇐⇒ π > 0. (13)

The inequality on the left-hand side is familiar by now, and equivalence (13) shows that it also determines

the WTP to reduce the time risk of a loss. As an example, when τ̃2 is more left-skewed than τ̃1 (as when

τ̃2 = τ̃
(3)
B + 1 and τ̃1 = τ̃

(3)
A + 1, as in Section 4.1), then discount prudence ensures a positive WTP, π > 0.

As another example, convex discounting is equivalent to a positive WTP for facing the loss at a certain

time over facing it at an uncertain time with equal expectation, which follows from equation (13), when

τ̃1 ≡ E[τ̃2]. Because we will refer to this case again later, let us denote the premium of eliminating a time

risk τ̃ entirely (i.e., the case τ̃2 = τ̃ and τ̃1 = E[τ̃]) by πτ̃, in which case equation (12) becomes

E[ρ(τ̃)]− ρ(E[τ̃]) = ∆u(πτ̃). (T)
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Next, let us study the WTP to avoid not only the time risk (τ̃, L) but the loss entirely. We denote the WTP

for it by πτ̃L, because a technology that eliminates L also makes the realization of τ̃ irrelevant. It is defined

via

u(c− πτ̃L) +
T

∑
t=1

ρ(t)u(c) = u(c) + E[v(τ̃)],

which can be transformed into

E[ρ(τ̃)] = ∆u(πτ̃L). (TL)

Before we interpret equation (TL), note that avoiding the loss entirely in case of a degenerate time risk,

τ̃ ≡ E[τ̃], yields a WTP (which we denote by πL), given by

ρ(E[τ̃]) = ∆u(πL). (L)

By combining equations (TL), (L), (T), one can observe that

∆u(πτ̃L) = ∆u(πL) + ∆u(πτ̃). (14)

That is, the WTP to prevent a loss at an uncertain time can be additively decomposed into a component

attributable to the loss itself and a component attributable to the associated time risk. This result holds for

all increasing utility functions, but it is most crisply illustrated for the case of a risk-neutral social planner.

This case is also economically important, since the WTP coincides with the net present value (NPV) of

avoiding the loss. In particular, note that under risk-neutrality, we have ∆u(π) = π
L . Then,

πτ̃L = πL + πτ̃, (NPV)

and the respective contributions are given by

πτ̃L = L ·E[ρ(τ̃)], πL = L · ρ(E[τ̃]), and πτ̃ = L · (E[ρ(τ̃)]− ρ(E[τ̃])) .

πL is the NPV, as usually considered in the literature, that is, the NPV of not incurring the loss of L in the
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(certain) period E[τ̃]. It is simply given by the loss itself, discounted by the time at which it will occur.

In the presence of time risk and when using any of the commonly used (anti-mixed) discount functions,

this NPV needs to be adjusted upward. The upward adjustment πτ̃ is given by the product of the loss size

and the discount premium Dτ̃−E[τ̃](E[τ̃]) = E[ρ(τ̃)]− ρ(E[τ̃]), as defined in Section 3.3. This discount

premium describes the change in the (expected) discount factor that results from making the time of the

loss’s occurrence risky; that is, from replacing E[τ̃] by τ̃. Ignoring πτ̃ or the discount premium results in

systematic underinvestment in measures against losses that are only a matter of time.

As an illustration of this section’s results, consider the case in which the loss L is the consequence

of an environmental catastrophe due to climate change (e.g., a flood due to a rise in sea level). A large

body of literature is concerned with determining the discount rate that is appropriate for discounting the

costs and benefits of climate change abatement activities; see, for example, Gollier (2014) and references

therein. Our results clarify—for given discount functions with arbitrary discount rates—how time risk can

be incorporated in cost-benefit analysis, simply by adding πτ̃ to the NPV. Taking into account time risk

when computing the NPV of an abatement investment can prevent the social planner from misallocating her

resources today.

6 Discussion

In order to illustrate the duality between outcome and time risk preferences, we have assumed that the

outcome that is only a matter of time is certain. Due to the EDU assumption that discounting and utility are

multiplicatively separable, all results in this article generalize to random outcomes that are only a matter of

time, that is, to elements (τ̃, x̃) ∈ ∆—as long as τ̃ and x̃ are independent. In the investment application of

Section 4.2, for example, we may assume that the payoff at the random exit time is also random—as long

as this randomness is independent from the exit time. The case of general (τ̃, x̃) ∈ ∆, where a random

payoff occurs at a random time and where these uncertainties may be dependent, is more complicated. The

novel properties of the discount function identified in this article might remain important though—just as

the properties of atemporal utility functions remain important once taking into account the widely neglected

aspect of time risk.

Another generalization of this article’s results concerns the assumption of EDU preferences itself. It is

relatively straightforward to extend the time-outcome risk duality to discounted versions of rank-dependent
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utility (RDU, Quiggin 1982) and cumulative prospect theory (CPT, Tversky and Kahneman 1992).8 DeJar-

nette et al. (2018) propose and axiomatize a generalization of EDU. Among other things, their generalized

expected discounted utility (GEDU) model allows for more flexible attitudes toward time risk and intertem-

poral substitution. Another generalization of preferences concerns the relaxation of the multiplicative sepa-

rability of time and outcome as assumed in EDU. For fixed x ∈ X and (τ̃, x) ∈ ∆, the preference functional

U(τ̃, x) in equation (4) is univariate. Then, all results go through by identifying the appropriate conditions

on U rather than on ρ. The study of (higher-order) preferences toward ambiguous receipt times (rather than

risky receipt times), as considered in an experiment by Eliaz and Ortoleva (2015), constitutes yet another

topic for future research.

Some of this article’s results are amenable for empirical testing. Ebert (2018) investigates the prevalence

of prudence and temperance toward certain, desirable outcomes. The described asymmetries between the

(higher-order) time risk preferences toward desirable and undesirable outcomes (e.g., preferences for com-

bining good with good versus preferences for combining good with bad, respectively) deserve investigation,

just as does the analysis of preferences toward (independent) random outcomes that are only a matter of

time. Measurements of the various (delay) risk premia defined in this paper could shed light on the rel-

evance and intensity of time risk preferences; higher-order time risk premia (e.g., the time risk analogue

to the prudence premium considered in Crainich and Eeckhoudt 2008) could be defined and measured as

well. One might also put various behavioral implications of time risk preferences (e.g., for investment) to

the test. Confirmations and violations of predictions obtained under EDU could guide the development of

more general models, as discussed above.

8To see this for RDU, let us focus on desirable outcomes and consider the rank-dependent generalization of equation (4), where

U(τ̃, x) =
∫

R+

w (P(ρ(τ̃)u(x) > y))dy

for some strictly increasing weighting function w : [0, 1] −→ [0, 1], with w(0) = 0 and w(1) = 1. Substituting z := y
u(x) , it

follows that

U(τ̃, x) = u(x)
∫

R+

w (P(ρ(τ̃) > z))dz =: u(x)RDU[ρ(τ̃)],

and the time-outcome risk duality follows just as in the EDU case. The derivation for CPT is similar but involves more notation.
Upon defining a certain future date as a reference point (i.e., reference date), earlier arrivals of desirable outcomes could be felt as
a time gain, while later arrivals could be felt as a time loss. A kink of the discount function at the reference date (with a steeper
decline thereof to the right) would imply time loss aversion.
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7 Conclusion

This article analyzes time risk preferences and their behavioral implications within EDU. A simple obser-

vation referred to as the time-outcome risk duality clarifies how known results about utility functions and

outcome risk preferences can be given a correspondence in the realm of discount functions and time risk

preferences. We defined prudent (ρ′′′ ≤ 0) and intemperate (ρ′′′′ ≥ 0) discounting and studied some first

behavioral implications of these and other properties in situations where a certain outcome is only a matter

of time. Further applications may be down the road, and other results on utility functions, as collected,

for example, in Gollier (2001), may turn out to have important correspondences in the realm of discount

functions.
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ONAY, S. AND A. ÖNCÜLER (2007): “Intertemporal Choice under Timing Risk: An Experimental Ap-

proach,” Journal of Risk and Uncertainty, 38, 99–121.

PHELPS, E. AND R. POLLAK (1968): “On Second-Best National Saving and Game-Equilibrium Growth,”

Review of Economic Studies, 35, 185–199.

PRATT, J. W. (1964): “Risk Aversion in the Small and in the Large,” Econometrica, 32, 122–136.

QUIGGIN, J. (1982): “A Theory of Anticipated Utility,” Journal of Economic Behaviour and Organization,

3, 323–343.

ROTHSCHILD, M. D. AND J. E. STIGLITZ (1970): “Increasing Risk: I. A Definition,” Journal of Economic

Theory, 2, 225–243.

SAMUELSON, P. (1937): “A Note on Measurement of Utility,” Review of Economic Studies, 4, 155–161.

TVERSKY, A. AND D. KAHNEMAN (1992): “Advances in Prospect Theory: Cumulative Representation of

Uncertainty,” Journal of Risk and Uncertainty, 5, 297–323.

26

 Electronic copy available at: https://ssrn.com/abstract=2674160 


	Introduction
	The time-outcome risk duality
	A behavioral characterization of time risk preferences when outcomes are desirable
	Decreasing discount functions
	Risk-averse discounting
	Prudent discounting
	Temperate discounting
	Higher orders and anti-mixed discounting

	Applications
	Preferences toward skewed and leptokurtic time risks
	Investment under delay risk
	Comparative time risk-seeking and the Arrow-Pratt measure of a discount function
	Precautionary patience: Prudent behavior toward delay risk

	The case of undesirable outcomes
	The dual discount function
	Exponential discounting of undesirable outcomes that are only a matter of time
	Willingness to pay (WTP) and net present value (NPV) under time risk

	Discussion
	Conclusion

