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Abstract

Many important “big data” applications need to process
data arriving in real time. However, current program-
ming models for distributed stream processing are rel-
atively low-level, often leaving the user to worry about
consistency of state across the system and fault recov-
ery. Furthermore, the models that provide fault recovery
do so in an expensive manner, requiring either hot repli-
cation or long recovery times. We propose a new pro-
gramming model, discretized streams (D-Streams), that
offers a high-level functional programming API, strong
consistency, and efficient fault recovery. D-Streams sup-
port a new recovery mechanism that improves efficiency
over the traditional replication and upstream backup so-
lutions in streaming databases: parallel recovery of lost
state across the cluster. We have prototyped D-Streams in
an extension to the Spark cluster computing framework
called Spark Streaming, which lets users seamlessly in-
termix streaming, batch and interactive queries.

1 Introduction

Much of “big data” is received in real time, and is most
valuable at its time of arrival. For example, a social net-
work may want to identify trending conversation topics
within minutes, an ad provider may want to train a model
of which users click a new ad, and a service operator may
want to mine log files to detect failures within seconds.

To handle the volumes of data and computation they
involve, these applications need to be distributed over
clusters. However, despite substantial work on clus-
ter programming models for batch computation [6, 22],
there are few similarly high-level tools for stream pro-
cessing. Most current distributed stream processing sys-
tems, including Yahoo!’s S4 [19], Twitter’s Storm [21],
and streaming databases [2, 3, 4], are based on a record-
at-a-time processing model, where nodes receive each
record, update internal state, and send out new records
in response. This model raises several challenges in a
large-scale cloud environment:

o Fault tolerance: Record-at-a-time systems provide
recovery through either replication, where there are
two copies of each processing node, or upstream
backup, where nodes buffer sent messages and re-

play them to a second copy of a failed downstream
node. Neither approach is attractive in large clusters:
replication needs 2x the hardware and may not work
if two nodes fail, while upstream backup takes a long
time to recover, as the entire system must wait for the
standby node to recover the failed node’s state.

o Consistency: Depending on the system, it can be
hard to reason about the global state, because dif-
ferent nodes may be processing data that arrived at
different times. For example, suppose that a system
counts page views from male users on one node and
from females on another. If one of these nodes is
backlogged, the ratio of their counters will be wrong.

o Unification with batch processing: Because the in-
terface of streaming systems is event-driven, it is
quite different from the APIs of batch systems, so
users have to write two versions of each analytics
task. In addition, it is difficult to combine streaming
data with historical data, e.g., join a stream of events
against historical data to make a decision.

In this work, we present a new programming model,
discretized streams (D-Streams), that overcomes these
challenges. The key idea behind D-Streams is to treat a
streaming computation as a series of deterministic batch
computations on small time intervals. For example, we
might place the data received each second into a new in-
terval, and run a MapReduce operation on each interval
to compute a count. Similarly, we can perform a running
count over several intervals by adding the new counts
from each interval to the old result. Two immediate ad-
vantages of the D-Stream model are that consistency is
well-defined (each record is processed atomically with
the interval in which it arrives), and that the processing
model is easy to unify with batch systems. In addition, as
we shall show, we can use similar recovery mechanisms
to batch systems, albeit at a much smaller timescale, to
mitigate failures more efficiently than existing streaming
systems, i.e., recover data faster at a lower cost.

There are two key challenges in realizing the D-
Stream model. The first is making the latency (interval
granularity) low. Traditional batch systems like Hadoop
and Dryad fall short here because they keep state on
disk between jobs and take tens of seconds to run each



job. Instead, to meet a target latency of several seconds,
we keep intermediate state in memory. However, sim-
ply putting the state into a general-purpose in-memory
storage system, such as a key-value store [17], would be
expensive due to the cost of data replication. Instead,
we build on Resilient Distributed Datasets (RDDs) [23],
a storage abstraction that can rebuild lost data without
replication by tracking the operations needed to recom-
pute it. Along with a fast execution engine (Spark [23])
that supports tasks as small as 100 ms, we show that
we can achieve latencies as low as a second. We be-
lieve that this is sufficient for many real-world big data
applications, where the timescale of events monitored
(e.g., trends in a social network) is much higher.

The second challenge is recovering quickly from fail-
ures. Here, we use the deterministic nature of the batch
operations in each interval to provide a new recovery
mechanism that has not been present in previous stream-
ing systems: parallel recovery of a lost node’s state.
Each node in the cluster works to recompute part of the
lost node’s RDDs, resulting in faster recovery than up-
stream backup without the cost of replication. Paral-
lel recovery was hard to implement in record-at-a-time
systems due to the complex state maintenance protocols
needed even for basic replication (e.g., Flux [20]),! but is
simple with the deterministic model of D-Streams.

We have prototyped D-Streams in Spark Streaming,
an extension to the Spark cluster computing engine [23].
In addition to enabling low-latency stream processing,
Spark Streaming interoperates cleanly with Spark’s batch
and interactive processing features, letting users run ad-
hoc queries on arriving streams or mix streaming and his-
torical data from the same high-level API.

2 Discretized Streams (D-Streams)

The key idea behind our model is to treat streaming com-
putations as a series of deterministic batch computations
on small time intervals. The input data received during
each interval is stored reliably across the cluster to form
an input dataset for that interval. Once the time inter-
val completes, this dataset is processed via deterministic
parallel operations, such as map, reduce and groupBy,
to produce new datasets representing program outputs or
intermediate state. We store these results in resilient dis-
tributed datasets (RDDs) [23], an efficient storage ab-
straction that avoids replication by using lineage for fault
recovery, as we shall explain later.

A discretized stream or D-Stream groups together a
series of RDDs and lets the user manipulate them to
through various operators. D-Streams provide both state-
less operators, such as map, which act independently on
each time interval, and stateful operators, such as aggre-

I'The one parallel recovery algorithm we are aware of, by Hwang et
al. [11], only tolerates one node failure and cannot mitigate stragglers.
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Figure 1: Lineage graph for the RDDs in the view count pro-
gram. Each oblong shows an RDD, whose partitions are drawn
as circles. Lineage is tracked at the granularity of partitions.

gation over a sliding window, which operate on multiple
intervals and may produce intermediate RDDs as state.

We illustrate the idea with a Spark Streaming program
that computes a running count of page view events by
URL. Spark Streaming provides a language-integrated
API similar to DryadLINQ [22] in the Scala language.
The code for the view count program is:

pageViews = readStream("http://...", "1s")
ones = pageViews.map(event => (event.url, 1))
counts = ones.runningReduce((a, b) => a + b)

This code creates a D-Stream called pageViews by
reading an event stream over HTTP, and groups it into
1-second intervals. It then transforms the event stream to
get a D-Stream of (URL, 1) pairs called ones, and per-
forms a running count of these using the runningReduce
operator. The arguments to map and runningReduce are
Scala syntax for a closure (function literal).

Finally, to recover from failures, both D-Streams and
RDDs track their lineage, that is, the set of deterministic
operations used to build them. We track this information
as a dependency graph, similar to Figure 1. When a node
fails, we recompute the RDD partitions that were on it by
rerunning the map, reduce, etc. operations used to build
them on the data still in the cluster. The system also peri-
odically checkpoints state RDDs (e.g., by replicating ev-
ery fifth RDD) to prevent infinite recomputation, but this
does not need to happen for all data, because recovery is
often fast: the lost partitions can be recomputed in par-
allel on separate nodes, as we shall discuss in Section 3.

D-Stream Operators D-Streams provide two types of
operators to let users build streaming programs:

e Transformation operators, which produce a new D-
Stream from one or more parent streams. These can
be either stateless (i.e., act independently on each in-
terval) or stateful (share data across intervals).

e Output operators, which let the program write data to
external systems (e.g., save each RDD to HDFS).

D-Streams support the same stateless transformations
available in typical batch frameworks [6, 22], including
map, reduce, groupBy, and join. We reused all of the op-
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Figure 2: Comparing the naive variant of reduceByWindow (a)
with the incremental variant for invertible functions (b). Both
versions compute a per-interval count only once, but the second
avoids re-summing each window. Boxes denote RDDs, while
arrows show the operations used to compute window [¢, ¢ + 5).

erators in Spark [23]. For example, a program could run
a canonical MapReduce word count on each time interval
of a D-Stream of sentences using the following code:

words = sentences.flatMap(s => s.split(" "))
pairs = words.map(w => (w, 1))
counts = pairs.reduceByKey((a, b) => a + b)

In addition, D-Streams introduce new stateful opera-
tors that work over multiple intervals. These include:

o Windowing: The window operator groups all of the
records from a range of past time intervals into a
single RDD. For example, in our earlier code, call-
ing pairs.window("5s").reduceByKey(_+_) yields
a D-Stream of word counts on intervals [0, 5), [1,6),
[2,7), etc. Window is the most general stateful oper-
ator, but it is also often inefficient, as it repeats work.

e Incremental aggregation: For the common use case
of computing an aggregate value, such as a count or
sum, over a sliding window, D-Streams have several
variants of a reduceByWindow operator. The simplest
one only takes an associative “merge” operation for
combining values. For example, one might write:

pairs.reduceByWindow("5s", (a, b) => a + b)

This computes a per-interval count for each time in-
terval only once, but has to add the counts for the past
five seconds repeatedly, as in Figure 2a. A more effi-
cient version for invertible aggregation functions also
takes a function for “subtracting” values and updates
state incrementally (Figure 2b).

o Time-skewed joins: Users can join a stream against
its own RDDs from some time in the past to compute
trends—for example, how current page view counts
compare to page views five minutes ago.

Finally, the user calls output operators to transfer re-
sults out of D-Streams into external systems (e.g., for dis-

play on a dashboard). We provide two such operators:
save, which writes each RDD in a D-Stream to a stor-
age system,” and foreach, which runs a user code snippet
(any Spark code) on each RDD in a stream. For example,
a user can print the counts computed above with:

counts. foreach(rdd => println(rdd.collect()))

Unification with Batch and Interactive Processing
Because D-Streams follow the same processing model
as batch systems, the two can naturally be combined.
Spark Streaming provides several powerful features to
unify streaming and batch processing.

First, D-Streams can be combined with static RDDs
computed, for example, by loading a file. For example,
one might join a stream of incoming tweets against a pre-
computed spam filter, or compare it with historical data.

Second, users can run a D-Stream program as a batch
job on previous historical data. This makes it easy com-
pute a new streaming report on past data as well.

Third, users can attach a Scala console to a Spark
Streaming program to run ad-hoc queries on D-Streams
interactively, using Spark’s existing fast interactive
query capability [23]. For example, the user could query
the most popular words in a time range by typing:

counts.slice("21:00", "21:05").topK(10)

The ability to quickly query any state in the system is
invaluable for users troubleshooting issues in real time.

3 Fault Recovery

Classical streaming systems update mutable state on a
per-record basis and use either replication or upstream
backup for fault recovery [12].

The replication approach creates two or more copies
of each process in the data flow graph [2, 20]. Support-
ing one node failure therefore doubles the hardware cost.
Furthermore, if two nodes in the same replica fail, the
system is not recoverable. For these reasons, replication
is not cost-effective in our large-scale cloud setting.

In upstream backup [12], each upstream node buffers
the data sent to downstream nodes locally until it gets an
acknowledgement that all related computations are done.
When a node fails, the upstream node retransmits all un-
acknowledged data to a standby node, which takes over
the role of the failed node and reprocesses the data. The
disadvantage of this approach is long recovery times, as
the system must wait for the standby node to catch up.

To address these issues, D-Streams employ a new
approach: parallel recovery. The system periodically
checkpoints some of the state RDDs, by asynchronously
replicating them to other nodes. For example, in a view
count program computing hourly windows, the system

2We can use any storage system supported by Hadoop, e.g., HDFS
or HBase, by calling into Hadoop’s I/O interfaces to these systems.
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Figure 3: Recovery time for parallel recovery vs. upstream
backup on N nodes, as a function of the load before a failure.

could checkpoint results every minute. When a node
fails, the system detects the missing RDD partitions and
launches tasks to recover them from latest checkpoint.
Many fine-grained tasks can be launched at the same
time to compute different RDD partitions on different
nodes. Thus, parallel recovery finishes faster than up-
stream backup, at a much lower cost than replication.

To show the benefit of this approach, we present re-
sults from a simple analytical model in Figure 3. The
model assumes that the system is recovering from a
minute-old checkpoint and that the bottleneck resource
in the recovery process is CPU. In the upstream backup
line, a single idle machine performs all of the recov-
ery and then starts processing new records. It takes a
long time to catch up at high system loads because new
records for it continue to accumulate while it is rebuild-
ing old state.> In the other lines, all of the machines
partake in recovery, while also processing new records.
With more nodes, parallel recovery catches up with the
arriving stream much faster than upstream backup.*

One reason why parallel recovery was hard to perform
in previous streaming systems is that they process data
on a per-record basis, which requires complex and costly
bookkeeping protocols (e.g., Flux [20]) even for basic
replication. In contrast, D-Streams apply deterministic
transformations at the much coarser granularity of RDD
partitions, which leads to far lighter bookkeeping and
simple recovery similar to batch data flow systems [6].

Finally, beside node failures, another important con-
cern in large clusters is stragglers [6]. Fortunately, D-
Streams can also recover from stragglers in the same
way as batch frameworks like MapReduce, by execut-
ing speculative backup copies of slow tasks. This type of
speculation would again be difficult in a record-at-a-time
system, but becomes simple with deterministic tasks.

3For example, when the load is 0.5, the standby node first has to
spend 0.5 minutes to recompute the 1 minute of state lost since the
checkpoint, then 0.25 minutes to process the data that arrived in those
0.5 minutes, then 0.125 minutes to process the data in this time, etc.

4Note that when the system’s load before failure is high enough, it
can never recover because the load exceeds the available resources.
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Figure 4: Performance of Grep and sliding WordCount on dif-
ferent cluster sizes. We show the maximum throughput attain-
able under an end-to-end latency below 1 second or 2 seconds.

4 Results

We implemented a prototype of Spark Streaming that ex-
tends the existing Spark runtime and can receive streams
of data either from the network or from files periodically
uploaded to HDFS. We briefly evaluated its scalability
and fault recovery using experiments on Amazon EC2.
We used nodes with 4 cores and 15 GB RAM.

Scalability We evaluated the scalability of the sys-
tem through two applications: Grep, which counts in-
put records matching a pattern, and WordCount, which
performs a sliding window word count over 10 second
windows. For both applications, we measured the max-
imum throughput achievable on different-sized clusters
with an end-to-end latency target of either 1 or 2 seconds.
By end-to-end latency, we mean the total time between
when a record enters the system and when it appears in
a result, including the time it waits for its batch to start.
We used a batching interval of 0.5s and 100-byte records.

Figure 4 plots the results. We see that the system can
process roughly 40 MB/second/node (400K records/s/n-
ode) for Grep and 20 MB/s/node (200K records/s/node)
for WordCount at sub-second latency, as well as slightly
more data if we allow 2s of latency. The system also
scales nearly linearly to 50 nodes. The scaling is not per-
fect because there are more stragglers with more nodes.

Parallel Recovery We evaluated parallel fault recov-
ery using two applications, both of which received 10
MB/s of data per node on 10 nodes, and used 2-second
batching intervals. The first application, MaxCount, per-
formed a word count in each 2-second interval, and com-
puted the maximum count for each word over the past 30
seconds using a sliding window. Because max is not an
invertible operation, we used the naive reduceByWindow
that recomputes every 2s. We ran this application both
without any checkpointing (except for replication of the
input data). Each interval took 1.66s to process be-
fore the failure, whereas the average processing time of
the interval during which a failure happened was 2.64s
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WordCount job. After a failure, the jobs for the next 30s (shown
in red) can take slightly longer than average because they may
need to recompute the local counts from 30s ago.

(std.dev. 0.19s). Even though results dating back 30 sec-
onds had to be recomputed, this was done in parallel,
costing only one extra second of latency.

The second application performed a sliding word
count with a 30s window using the the incremen-
tal reduceByWindow operator, and checkpointed data
every 30s. Here, a failure-free interval took 1.47s,
while an interval with a failure took on average 2.31s
(std.dev. 0.43s). Recovery was faster than with Max-
Count because each interval’s output only depends on
three previous RDDs (the total count for the previous in-
terval, the local count for the current interval, and the
local count for 30 seconds ago). However, one interest-
ing effect was that any interval within the next 30s after
a failure could exhibit a slowdown, because it might dis-
cover that part of the local counts for the interval 30s
before it were lost. Figure 5 shows an example of this,
where the interval at 30s, when the failure occurs, takes
2.26s to recover, but the intervals at times 32, 34, 46 and
48 also take slightly longer. We plan to eagerly recom-
pute lost RDDs from the past to mitigate this.

5 Related Work

The seminal academic work on stream processing was in
streaming databases such as Aurora, Borealis, Telegraph,
and STREAM [4, 2, 3, 1]. These systems provide a SQL
interface and achieve fault recovery through either repli-
cation (an active or passive standby for each node [2, 13])
or upstream backup [12]. We make two contributions
over these systems. First, we provide a general program-
ming interface, similar to DryadLINQ [22], instead of
just SQL. Second, we provide a more efficient recovery
mechanism: parallel recomputation of lost state. Parallel
recovery is feasible due to the deterministic nature of D-
Streams, which lets us recompute lost partitions on other
nodes. In contrast, streaming DBs update mutable state
for each incoming record, and thus require complex pro-
tocols for both replication (e.g., Flux [20]) and upstream
backup [12]. The only parallel recovery protocol we are
aware of, by Hwang et al [11], only tolerates one node
failure, and cannot handle stragglers.

In industry, most stream processing frameworks use a
lower-level message passing interface, where users write

stateful code to process records in a queue. Examples in-
clude S4, Storm, and Flume [19, 21, 7]. These systems
generally guarantee at-least-once message delivery, but
unlike D-Streams, they require the user to manually han-
dle state recovery on failures (e.g., by keeping all state in
a replicated database) and consistency across nodes.

Several recent research systems have looked at on-
line processing in clusters. MapReduce Online [5] is a
streaming Hadoop runtime, but cannot compose multiple
MapReduce steps into a query or recover stateful reduce
tasks. iMR [15] is an in-situ MapReduce engine for log
processing, but does not support more general computa-
tion graphs and can lose data on failure. CBP [14] and
Comet [10] provide “bulk incremental processing” by
running MapReduce jobs on new data every few minutes
to update state in a distributed file system; however, they
incur the high overhead of replicated on-disk storage. In
contrast, D-Streams can keep state in memory without
costly replication, and achieve order of magnitude lower
latencies. Naiad [16] runs computations incrementally,
but does not yet have a cluster implementation or a dis-
cussion of fault tolerance. Percolator [18] performs in-
cremental computations using triggers, but does not offer
consistency guarantees across nodes or high-level opera-
tors like map and join.

Finally, our parallel recovery mechanism is conceptu-
ally similar to recovery techniques in MapReduce, GFS,
and RAMCloud [6, 9, 17], which all leverage repartition-
ing. Our contribution is to show that this mechanism can
be applied on small enough timescales for stream pro-
cessing. In addition, unlike GFS and RAMCloud, we re-
compute lost data instead of having to replicate all data,
avoiding the network and storage cost of replication.

6 Conclusion

We have presented discretized streams (D-Streams), a
stream programming model for large clusters that pro-
vides consistency, efficient fault recovery, and power-
ful integration with batch systems. The key idea is to
treat streaming as a series of short batch jobs, and bring
down the latency of these jobs as much as possible. This
brings many of the benefits of batch processing models
to stream processing, including clear consistency seman-
tics and a new parallel recovery technique that we be-
lieve is the first truly cost-efficient recovery technique
for stream processing in large clusters. Our implemen-
tation, Spark Streaming, lets users seamlessly intermix
streaming, batch and interactive queries.

In future work, we plan to use Spark Streaming to
build integrated systems that combine these types of
processing [8], and to further explore the limits of D-
Streams. In particular, we are interested in pushing the
latency even lower (to about 100 ms) and in recovering
from failures faster by providing approximate results.
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