

Simplify, Perfect, Innovate

Using DFSS as an Integrating Framework for MBT&E and DOT&E

Dr. Mark J. Kiemele Air Academy Associates

NDIA 2011 Test & Evaluation Conference Tampa, FL 14 March 2011

Mark J. Kiemele, Ph.D.

Office: 719-531-0777 Cell: 719-337-0357 mkiemele@airacad.com www.airacad.com

Using DFSS as an Integrating Framework for MBT&E and DOT&E

Dr. Mark J. Kiemele Air Academy Associates

NDIA 2011 Test & Evaluation Conference Tampa, FL 14 March 2011

Simplify, Perfect, Innovate

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Warm-Up Exercise

- Goal: full concentration on the subject
- Eliminate extraneous issues that could inhibit that
- Write down the top issue on a plain sheet of paper
- Jettison this issue by doing the following:
 - Design a paper airplane that will help you deposit this issue in the waste basket.

- Launch your paper airplane at the waste basket from your seating area. You may stand or even move around to launch if you wish.

- Goal is to put the issue in the waste basket, which is obviously symbolic of "putting the issue away."

Simplify, Perfect, Innovate

Food for Thought True or False?

The systems and products that deliver value to our warfighters are perfectly designed to achieve the results we are getting today.

Session Goals and Objectives

- 1. Know what DFSS is and understand that it is a strategy that uses DOE and other powerful methods to design, develop, and field successful systems.
- 2. Understand the DFSS process—Identify, Design, Optimize, Validate (IDOV)—and know that it focuses heavily on the Voice of the Warfighter.
- 3. Know that the DFSS process translates requirements, i.e., task capabilities and system attributes, into measures of effectiveness and measures of performance and then subsequently into design parameters which are then optimized to produce highly capable products and services.
- 4. Relate to some of the powerful tools that are unique to the DFSS process.
- 5. Understand what a transfer function is, be able to comprehend its value, and see that it can be used to develop linkages between Critical Operational Issues (COIs) and measures of performance/effectiveness.
- 6. Comprehend the opportunity for DFSS in your organization with regard to MBT&E and DOT&E.

7

Agenda

- Introduction and Review
- The Motivation for DFSS
- The DFSS Process: Identify, Design, Optimize, Validate (IDOV)
 - The Identify Phase
 - -The DFSS Scorecard
 - -Voice of the Customer (VOC)
 - The Design Phase
 - -Translating the VOC (Requirements Flowdown)
 - -Concept Generation and Selection
 - -Transfer Functions
 - -Critical Parameter Management
 - The Optimize Phase
 - -Multiple Response Optimization
 - -Expected Value Analysis Using Monte Carlo Simulation
 - -Parameter Design
 - -Tolerance Allocation
 - The Validate Phase
 - -High Throughput Testing

• Recap of DFSS with MBT&E and Designing the Test and Evaluation

AIR ACADEMY ASSOCIATES

Simplify, Perfect, Innovate

DFSS Success Stories

Introduction and Review

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Performance Improvement Evolution

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Graphical Meaning of $\overline{\textbf{y}}$ and σ

 σ = Standard Deviation

$\sigma \approx$ average distance of points from the centerline

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Graphical View of Variation

Typical Areas under the Normal Curve

Simplify, Perfect, Innovate

Graphical View of Variation and Performance Capability

The Sigma rating/capability of a process performance measure is the result of comparing the **Voice of the Process** with the **Voice of the Customer**, and it is defined as follows:

The **number of Sigmas** between the center of a process performance measure's distribution and the nearest specification limit

Sigma Ratings Measure Process Capability

Sigma Capability is a measure of quality. It compares the Voice of the Process with the Voice of the Customer and is correlated to the defect rate. It is computed from DPMO. <u>Yield</u> is the probability that whatever we are producing (manufactured part, PO, shipped part, etc.) will pass through the entire process without rework and without defects.

σ Capability*	DPMO*	RTY				
2	308,537	69.1%				
3	66,807	93.3%				
4	6,210	99.4%				
5	233	99.97%				
6	3.4	99.99966%				
Process Capability	Defects per Million Opportunities	Rolled Throughput Yield				

Six Sigma is a standard of Excellence. It means less than 4 Defects per Million Opportunities.

* Assumes a 1.5 sigma shift in average if the performance measure is normally distributed

Simplify, Perfect, Innovate

©2011 Air Academy Associates, LLC. Do Not Reproduce.	Page 11	
--	---------	--

Relationship Between Lean, Six Sigma and DFSS

©2011 Air Academy Associates, LLC. Do Not Reproduce.

The Motivation for DFSS

What Have We Learned from LSS (DMAIC)?

DFSS: Getting to the Next Level (the high hanging fruit)

Why DFSS

- Reduce Cycle Time in the Design and Development Process
- Reduce the Time to Money (TTM)
- Reduce the Cost of Poor Quality
- Improve Predictability of QCD (Quality, Cost, Delivery)

The Benefits of DFSS

The Vision of DFSS

- Lean Six Sigma (DMAIC) fixes known problems.
- DFSS prevents unknown problems from occurring.

Simplify, Perfect, Innovate

Infamous Quote

"As we know, there are known knowns. These are the things we know we know.

We also know there are known unknowns. That is to say we know there are some things we do not know.

But there are also unknown unknowns, the ones we don't know we don't know."

Donald Rumsfeld Department of Defense news briefing February 12, 2002

©2011 Air Academy Associates, LLC. Do Not Reproduce.	Page 21	
--	---------	--

Overview of the DFSS Process

Identify-Design-Optimize-Validate (IDOV*) Model * The IDOV four-phase DFSS process originated with Dr. Norm Kuchar at GE CRD and is used with permission.

Methods and Tools Used in DFSS

<u>l</u> dentify	<u>D</u> esign	<u>O</u> ptimize	<u>V</u> alidate
Dreiget er Study Charter	Assign Specifications	Listogram	Sonoitivity Analysia
Stratagia Dian	to CTC'o	Distributional Analysis	Sensitivity Analysis
Cross Eurotional Team		Empirical Data Distribution	Gap Analysis
Voice of the Customer	Critical Parameter Mat	Empirical Data Distribution	FINICA
Customer Potention Crid	Earmulate Design Concente	Adding Noice to EVA	Control Dion
Penchmarking	Pointulate Design Concepts	Non Normal Output Distributions	
		Design of Experimente	PF/CE/CNA/SOF
		Multiple Response Optimization	Miatoko Droofing
	FINEA	Rebust Design Development	Men
Focus Groups	Fault Tree Analysis	Robust Design Development	MOA Depatien Dien
Interviews	Brainstorming	Using S-nat Model	Reaction Plan
Internet Search		Using Interaction Plots	High Inroughput Testing
Historical Data Analysis	Scorecard	Using Contour Plots	
Design of Experiments	Iransfer Function	Parameter Design	
Quality Function Deployment	Design of Experiments	Tolerance Allocation	
Pairwise Comparison	Deterministic Simulators	Design For Manufacturability a	and Assembly
Analytical Hierarchy Proces	ss Discrete Event Simulation	Mistake Proofing	
Performance Scorecard	Confidence Intervals	Product Capability Prediction	
Flow Charts	Hypothesis Testing	Part, Process, and SW Scoreca	ard
FMEA	MSA	Risk Assessment	
Visualization	Computer Aided Design	Reliability	
	Computer Aided	Multidisciplinary Design Optim	ization (MDO)
*Unique to DFSS	Engineering		

©2011 Air Academy Associates, LLC. Do Not Reproduce.

DCIATES

Simplify, Perfect, Innovate

DFSS vs DMAIC

Project Selection: "DMAIC" or "DFSS"?

- In general,
 - "DMAIC" approach and tools work best when goal is to improve an existing product or process, with baseline performance metrics.
 - "DFSS" approach and tools work best when goal is to design a new product or process, with no baseline performance metrics available, or to redesign an existing product or process that is not meeting the performance requirements.

 Many projects contain elements of both; use appropriate tools, without concern about "purity" of approach

The Identify Phase

©2011 Air Academy Associates, LLC. Do Not Reproduce.

The DFSS Process: Identify, Design, Optimize, Validate

-The Identify Phase -The DFSS Scorecard -Voice of the Customer (VOC)

- The **Design** Phase

- -Translating the VOC (Requirements Flowdown)
- -Concept Generation and Selection
- -Transfer Functions
- -Critical Parameter Management
- The Optimize Phase
 - -Multiple Response Optimization
 - -Expected Value Analysis Using Monte Carlo Simulation
 - -Parameter Design
 - -Tolerance Allocation
- The Validate Phase
 - -High Throughput Testing

Simplify, Perfect, Innovate

DFSS Scorecard and its Components

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Examples of Parts, Process, Performance

		Refrigerator	Engraved Nameplate	Statapult®
	PARTS	shelves	metal plate	pull-back arm
		drawers	sealant	pins
		evaporator		сир
		thermostat		rubber band
1	PROCESS	weld sheet metal	align plate	attach protractor
/		attach handle	engrave	attach cup
		attach handle	apply sealant	drill holes
		spray protective coating		assemble side panels to base
	PERFORMANCE	noise level	plate flatness	ball/cup fit
<u>ES</u> ovate		cooling speed	engraving quality	lateral dispersion

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Simplify, Perfe

Examples* of Scorecard Entries for MBT&E

©2011 Air Academy Associates, LLC. Do Not Reproduce.	Page 31	
--	---------	--

Scorecard Construction

- The scorecard is broken down into 4 major areas:
 - Parts
 - Process
 - Performance
 - Software
- A total dpu is computed for each of the four areas
- The 4 dpu's are summed to obtain a total (overall) dpu for the entire product

 First Pass Yield (FPY) is estimated using the approximation:

$$FPY = e^{-dpu}$$

Simplify, Perfect, Innovate

Scorecard Example (Nameplate)

Part Scorecard

					Cont	inuous Va	riable		Sample Si	ze Known	ppm Only	
#	Part Name	DPU	Qty	Target	Mean	Std Dev	LSL	USL	UOM	Sample Size	# Defective	ppm
1	plate thickness	0.0001083	1	0.0625	0.0614	0.008	0.03125	0.09375	in.			
2	plate width	0.0004306	1	1.5	1.51	0.015	1.44	1.56	in.			
3	sealant	0.00005	1									50

Process Scorecard

					(Continuous Variable						Sample Size Known		
#	Process Step	DPU	Qty	Opps	Target	Mean	Std Dev	LSL	USL U	ЭM	Sample Size	# Defective	ppm	
1	align plate in fixture	0.0005000	1	1									500	
2	engrave	0.0020000	1	1							1500	3		
3	apply sealant	0.0073333	1	1							1500	11		

Performance Scorecard

					Continu	ous Variable	Sample S	ppm Only			
#	Performance	DPU	Qty	Target	Mean	Std Dev LSL	USL	UOM	Sample Size	# Defective	ppm
1	plate flatness	0.0009977	1		0.091	0.011	0.125	in.			
2	engraving quality	0.00025	1						4000	1	

ΈS

Simplify, Perfect, Innovate

Scorecard Example (Nameplate, cont.)

Overall Scorecard (Roll-Up)

	Scorecard S	Summary				
	# Steps/Parts	Total dpu	Yield	dpmo	ST Sigma	LT Sigma
Part	3	0.000589	99.94%	196.31	5.04	3.54
Process	3	0.009833	99.02%	3,277.78	4.22	2.72
Performance	2	0.001248	99.88%	623.86	4.73	3.23
Software	0					
Total	8	0.011669983	98.84%	1458.748	4.476	2.976

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Statapult Scorecard Summary

	Scorecard S	Summary				
	# Steps/Parts	Total dpu	Yield	dpmo	ST Sigma	LT Sigma
Part	34	0.225959	79.78%	6,645.86	3.98	2.48
Process	77	0.260752	77.05%	3,386.39	4.21	2.71
Performance	4	0.010783	98.93%	2,695.69	4.28	2.78
Software	0					
Total	115	0.497494041	60.81%	4,326.035	4.126	2.626

				Continuous Variable						Sample Siz	e Known	ppm Only
#	Part Name	DPU	Qty	Target	Mean	Std Dev	LSL	USL	UOM	Sample Size	# Defective	ppm
1	Base	2.8666E-07	1	0.75	0.76	0.012	0.68	0.82	inches			
2	Side Plates	0.13137951	2	0.75	0.747	0.027	0.7	0.8	inches			
3	Cup	0.05714286	1							140	8	
4	Cup Screw	0.000014	1									14
5	Front Fixed Arm	0.00147276	1	0.75	0.745	0.015	0.7	0.8	inches			
6	Pull Back Arm Length	9.0705E-05	1	14.5	14.55	0.12	14	15	inches			
7	Pull Back Arm Width	0.00095062	1	0.75	0.752	0.015	0.7	0.8	inches			
8	Angle Scale	0.0014	1							10000	14	
9	Angle Pointer	0.00015	1							20000	3	
10	Removable Pins	0.00006	3									20
11	Nameplate	0.00025	1									250
12	Eye Bolt	0.0004995	1							2002	1	
13	Wing Nut	0.002	2							2000	2	
14	Stop Pad	0.000031	1									31
15	Ball	3.1672E-05	1	1.5	1.51	0.01	1.45	1.55	inches			
16	Rubber Band	0.0001	1									100
17	Metal Pins	0.00039992	2							10002	2	
18	Wooden Peg	0.00987425	1	0.375	0.373	0.0075	0.355	0.395	inches			
19	Wood Screw	0.00008	8									10
20	Plastic Cap	0.000032	2									16
21	Adhesive	0.02	1							100	2	

©2011 Air Academy Associates, LLC. Do Not Reproduce.
Statapult Scorecard Summary (cont.)

						Continu	uous Variab	ole			Sample Si	ze Known	ppm Only
#	Process Step	DPU	Qty	Opps	Target	Mean	Std Dev	LSL	USL	UOM	Sample Size	# Defective	ppm
1	drill cb through holes	0.0039000	6	2									650
2	drill non-cb through holes	0.0072000	18	1									400
3	drill cs holes	0.0040000	1	2							2000	8	
4	drill blind holes	0.0270000	9	2							1000	3	
5	assemble fixed arm and side	0.0000000	1	6		7.8	0.045	5		Ν			
6	install wood screws	0.1538462	2	1							26	2	
7	install caps	0.0080000	2	1							1000	4	
8	install wooden peg	0.0006667	1	1							3000	2	
9	install angle scale	0.0196078	1	2							102	2	
10	attach angle pointer	0.0020000	1	2							1000	2	
11	attach rubber stop pad	0.0013316	1	2							1502	2	
12	install cup on arm	0.0010000	1	1									1000
13	install removable pins	0.0002000	2	1							10002	1	
14	insert arm between side plate	0.0020000	1	2							1000	2	
15	assemble rubber band	0.0200000	1	3							150	3	
16	attach name plate	0.0100000	1	2							100	1	

					Continuous Variable						Sample Size Known		
#	Performance	DPU	Qty	Target	Mean	Std Dev	LSL	USL	UOM	Sample Size	# Defective	ppm	
1	gap	0.006252391	1		0.06	0.014	0.005	0.095	inches				
2	distance	0.003830381	1		162	4.5	150		inches				
3	life	0.0002	1									200	
4	wood grain quality	0.0005	1							4000	2		

Who is known to have said this?

If we're not keeping score, we're only practicing.

Hint: a famous football coach

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Understanding the Voice-of-the-Customer (VOC)

Suddenly, a heated exchange took place between the king and the moat contractor.

Source: The Far Side The Far Side Millennium Off-the-Wall Calendar 2000 Far Works, Inc.

©2011 Air Academy Associates, LLC. Do Not Reproduce.

ATES

Simplify, Perfect, Innovate

Quality Function Deployment (QFD)

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Voice of the Customer (Refrigerator)

<u>VOC</u>

- "Want it to be energy efficient"
- "Want it to be quiet"
- "Needs to preserve food"
- "Want to be able to easily reconfigure the shelves"
- "Want to fit large, bulky items"
- "Should last a long time"
- "Would like it to match my kitchen"

Simplify, Perfect, Innovate

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Use Pairwise Comparison to Prioritize

©2011 Air Academy Associates, LLC. Do Not Reproduce.

ATES

Simplify, Perfect, Innovate

Place Customer Requirements & Rating into HOQ #1 (Refrigerator Example)

Grouped	_	Performance Measures							
requirements \	1			•					
A: energy efficient	2								
B: quiet	4								
C: preserves food	5								
D: easy to reconfigure	5								
E: handles large, bulky items	3								
F: lasts a long time	4								
G: matches kitchen	1								

Rating:

- 5: Must have for performance
 - 4: Highly desirable feature
 - 3: Desirable feature
 - 2: Usable feature but not critical
 - 1: Nice feature but not critical

Fill in Performance Measures Across Top

Peformance Measures (CTCs) — →		energy efficiency rating	noise level (db)	temperature range	cooling speed (sec. per degree)	% adjustable shelves	disassy / reassy time (sec)	shelf depth and width (in.)	door tray depth (in.)	mean time to failure (hrs)	# available colors
A: energy efficient	2										
B: quiet	4										
C: preserves food	5										
D: easy to reconfigure	5										
E: handles large, bulky items	3										
F: lasts a long time	4										
G: matches kitchen	1										

AIR ACADEMY ASSOCIATES Simplify, Perfect, Innovate

Relationships

- Now, determine the strength of the relationships between the customer requirements and the CTCs. Rate the relationship between each customer requirement and each CTC according to the scale below.
 - 9: Strong Relationship
 - 3: Medium Relationship
 - 1: Weak Relationship
 - Blank: No Relationship
- Compute a Rank-Ordered Sum for each CTC (multiply strength • rating and add)

HOQ # 1 Prioritizes the Performance Measures

CTCs/FPs (Functional Domain	n)	ncy rating	(q	ange		shelves	isy time (sec.)	(.ni) hidth (in.)	th (in.)	failure	lors
VOC (Customer Domain)		energy efficie	noise level (d	temperature r	cooling speed	% adjustable	disassy / reas	shelf depth a	door tray dep	mean time to	# available cc
Customer Requirements:	Importance Rating										
A: energy efficient	2	9	1	3	9			1	1	1	
B: quiet	4	3	9	1	3			-		-	
C: preserves food	5	3		9	9			1	1	1	
D: easy to reconfigure	5					3	9				
E: handles large, bulky items	3					9	1	9	9		
F: lasts a long time	4	1			1					9	
G: matches kitchen	1										9
9											
Weight	ed Sums >>>	49	38	55	79	42	48	34	34	43	9
Task Capabilities a	and System										

AIR ACADEMY ASSOCIATES

Simplify, Perfect, Innovate

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Attributes are mapped to

Performance Measures

Prioritized Measures Become Side of HOQ # 2

Case Study: OnTech Self-Heating Container

Key Features (VOC)

- Self-heating
- Activated by button on bottom of can
- Used for hot beverages and soups
- Disposable
- Environmentally compatible

©2011 Air Academy Associates Do Not Reproduce.

Pairwise Comparison

©2011 Air Academy Associates Do Not Reproduce.

Customer Domain Language to Functional Domain Language

©2011 Air Academy Associates Do Not Reproduce.

1st HOQ and Functional Domain

©2011 Air Academy Associates Do Not Reproduce.

The Design Phase

The DFSS Process: Identify, Design, Optimize, Validate

The Identify Phase
The DFSS Scorecard
Voice of the Customer (VOC)

- -The Design Phase
 - -Translating the VOC (Requirements Flowdown)
 - -Concept Generation and Selection
 - -Transfer Functions
 - -Critical Parameter Management
- The **Optimize** Phase
 - -Multiple Response Optimization
 - -Expected Value Analysis Using Monte Carlo Simulation
 - -Parameter Design
 - -Tolerance Allocation

Simplify, Perfect, Innovate

- The Validate Phase
 - -High Throughput Testing

Systems Engineering

- Complex products may require the "Divide and Conquer" approach.
- Requirements are flowed down, while capabilities are rolled up.
- System Engineers are the masters of the scorecard and make tradeoff decisions.

Simplify, Perfect, Innovate

Requirements Flowdown Using QFD

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Formulate Design Concepts

- Create alternative designs that fulfill CTC's.
- Compare designs with functional requirements (CTC's)
- Choose the best design
 - How do we decide which is the best approach?
- Assess risk of chosen design.
- Tools for Concept Generation and Selection
 - Axiomatic Design
 - TRIZ

Simplify, Perfect, Innovate

Pugh Concept Selection

2nd HOQ: Functional → Physical Domain

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Transfer Function: The Bridge to Innovation

Where does the transfer function come from?

- Exact transfer function
- Approximations
 - DOE
 - Historical Data Analysis
 - Simulation

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Simplify, Perfect, Innovate

Exact Transfer Functions

- Engineering Relationships
 - V = IR
 - F = ma

The equation for current (I) through this DC circuit is defined by:

$$I = \frac{V}{\frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}}} = \frac{V(R_{1} + R_{2})}{R_{1} \cdot R_{2}}$$

The equation for magnetic force at a distance X from the center of a solenoid is:

$$H = \frac{NI}{2\ell} \left[\frac{.5\ell + x}{\sqrt{r^2 + (.5\ell + x)^2}} + \frac{.5\ell - x}{\sqrt{r^2 + (.5\ell - x)^2}} \right]$$

Where

Simplify, Perfect, Innovate

- N: total number of turns of wire in the solenoid
- I: current in the wire, in amperes
- r: radius of helix (solenoid), in cm
- ℓ : length of the helix (solenoid), in cm
- x: distance from center of helix (solenoid), in cm
- H: magnetizing force, in amperes per centimeter

Hierarchical Transfer Functions

Purposeful changes of the inputs (factors) in order to observe corresponding changes in the output (response).

Simplify, Perfect, Innovate

©2011 Air Academy Associates, LLC. Do Not Reproduce.

DOE Helps Determine How Inputs Affect Outputs

Simplify, Perfect, Innovate

Catapulting Power into DFSS

Statapult[®] Catapult

©2011 Air Academy Associates, LLC. Do Not Reproduce.

The Theoretical Approach

©2011 Air Academy Associates, LLC. Do Not Reproduce.

The Theoretical Approach (cont.)

©2011 Air Academy Associates, LLC. Do Not Reproduce.

DCIATES

Simplify, Perfect, Innovate

Statapult[®] DOE Demo (The Empirical Approach)

	Ao Fa	ctual ctors	Coc	ded Fa	ctors	Respon	Response Values				
Run	Α	В	Α	В	AB	\mathbf{Y}_{1} \mathbf{Y}_{2}	Y	S			
1	144	2	-1	-1	+1						
2	144	3	-1	+1	-1						
3	160	2	+1	-1	-1						
4	160	3	+1	+1	+1						

What Makes DOE so Powerful? (Orthogonality: both vertical and horizontal balance)

A Full Factorial Design for 3 Factors A, B, and C, Each at 2 levels:

Run	A	В	С	AB	AC	BC	ABC
1	-	-	-	+	+	+	-
2	-	-	+	+	-	-	+
3	-	+	-	-	+	-	+
4	-	+	+	-	-	+	-
5	+	-	-	-	-	+	+
6	+	-	+	-	+	-	-
7	+	+	-	+	-	-	-
8	+	+	+	+	+	+	+
©2011 Air Aca	I Idemv Associates	Page	69				

Simplify, Perfect, Innovate

Value Delivery: Reducing Time to Market for New Technologies

OUTPUT

- Total # of Combinations $= 3^5 = 243$
- Central Composite Design: n = 30

Patent Holder: Dr. Bert Silich

Simplify, Perfect, Innovate

INPUT

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Aircraft Equations

- $$\begin{split} \mathsf{C}_{\mathsf{L}} = & .233 + .008(\mathsf{P})^2 + .255(\mathsf{P}) + .012(\mathsf{R}) .043(\mathsf{WD1}) .117(\mathsf{WD2}) + .185(\mathsf{WD3}) + .010(\mathsf{P})(\mathsf{WD3}) .042(\mathsf{R})(\mathsf{WD1}) + .035(\mathsf{R})(\mathsf{WD2}) + .016(\mathsf{R})(\mathsf{WD3}) + .010(\mathsf{P})(\mathsf{R}) .003(\mathsf{WD1})(\mathsf{WD2}) .006(\mathsf{WD1})(\mathsf{WD3}) \end{split}$$
- $$\begin{split} \mathsf{C}_{\mathsf{D}} = & .058 + .016(\mathsf{P})^2 + .028(\mathsf{P}) .004(\mathsf{WD1}) .013(\mathsf{WD2}) + .013(\mathsf{WD3}) + .002(\mathsf{P})(\mathsf{R}) .004(\mathsf{P})(\mathsf{WD1}) \\ & .009(\mathsf{P})(\mathsf{WD2}) + .016(\mathsf{P})(\mathsf{WD3}) .004(\mathsf{R})(\mathsf{WD1}) + .003(\mathsf{R})(\mathsf{WD2}) + .020(\mathsf{WD1})^2 + .017(\mathsf{WD2})^2 \\ & + .021(\mathsf{WD3})^2 \end{split}$$
- $$\begin{split} C_{Y} = & -.006(P) .006(R) + .169(WD1) .121(WD2) .063(WD3) .004(P)(R) + .008(P)(WD1) \\ & .006(P)(WD2) .008(P)(WD3) .012(R)(WD1) .029(R)(WD2) + .048(R)(WD3) .008(WD1)^{2} \end{split}$$
- $$\begin{split} \mathsf{C}_{\mathsf{M}} = & .023 .008(\mathsf{P})^2 + .004(\mathsf{P}) .007(\mathsf{R}) + .024(\mathsf{WD1}) + .066(\mathsf{WD2}) .099(\mathsf{WD3}) .006(\mathsf{P})(\mathsf{R}) + \\ & .002(\mathsf{P})(\mathsf{WD2}) .005(\mathsf{P})(\mathsf{WD3}) + .023(\mathsf{R})(\mathsf{WD1}) .019(\mathsf{R})(\mathsf{WD2}) .007(\mathsf{R})(\mathsf{WD3}) + .007(\mathsf{WD1})^2 \\ & .008(\mathsf{WD2})^2 + .002(\mathsf{WD1})(\mathsf{WD2}) + .002(\mathsf{WD1})(\mathsf{WD3}) \end{split}$$
- $$\begin{split} \textbf{C}_{\text{YM}} = & .001(\text{P}) + .001(\text{R}) .050(\text{WD1}) + .029(\text{WD2}) + .012(\text{WD3}) + .001(\text{P})(\text{R}) .005(\text{P})(\text{WD1}) .004(\text{P})(\text{WD2}) .004(\text{P})(\text{WD3}) + .003(\text{R})(\text{WD1}) + .008(\text{R})(\text{WD2}) .013(\text{R})(\text{WD3}) + .004(\text{WD1})^2 + .003(\text{WD2})^2 .005(\text{WD3})^2 \end{split}$$
- $C_{e} = .003(P) + .035(WD1) + .048(WD2) + .051(WD3) .003(R)(WD3) + .003(P)(R) .005(P)(WD1) + .005(P)(WD2) + .006(P)(WD3) + .002(R)(WD1)$

Fusing Titanium and Cobalt-Chrome

©2011 Air Academy Associates, LLC. Do Not Reproduce.

DOE "Market Research" Example

Suppose that, in the auto industry, we would like to investigate the following automobile attributes (i.e., factors), along with accompanying levels of those attributes:

A: Brand of Auto:	-1 = foreign		+1 = domestic
B: Auto Color:	-1 = light	0 = bright	+1 = dark
C:Body Style:	-1 = 2-door	0 = 4-door	+1 = sliding door/hatchback
D:Drive Mechanism:	-1 = rear wheel	0 = front wheel	+1 = 4-wheel
E: Engine Size:	-1 = 4-cylinder	0 = 6-cylinder	+1 = 8-cylinder
F: Interior Size:	-1 ≤ 2 people	0 = 3-5 people	+1 ≥ 6 people
G: Gas Mileage:	-1 ≤ 20 mpg	0 = 20-30 mpg	+1 ≥ 30 mpg
H:Price:	-1 ≤ \$20K	0 = \$20-\$40K	+1 ≥ \$40K

In addition, suppose the respondents chosen to provide their preferences to product profiles are taken based on the following demographic:

J: Age:	$-1 \le 25$ years old	+1 \geq 35 years old
K: Income:	-1 ≤ \$30K	+1 ≥ \$40K
L: Education:	-1 < BS	+1 ≥ BS

©2011 Air Academy Associates, LLC. Do Not Reproduce. Page 73

DOE "Market Research" Example (cont.)

Question: Choose the best design for evaluating this scenario

Answer: L_{18} design with attributes A - H in the inner array and factors J, K, and L in the outer array, resembling an L_{18} robust design, as shown below:

									L	-	+	-	+	-	+	-	+		
									Κ	-	-	+	+	-	-	+	+		
									J	-	-	-	-	+	+	+	+		
Run*	Α	В	С	D	Ε	F	G	Н		y ₁	y ₂	y ₃	y ₄	y 5	y 6	y 7	y 8	ÿ	S
1	-	-	-	-	-	-	-	-											
2	-	-	0	0	0	0	0	0			Segn	nenta	tion o	of the	popu	lation	or		
3	-	-	+	+	+	+	+	+			Ŭ				• •				
4	-	0	-	-	0	0	+	+				Res	spond	lent F	<u>Profile</u>	S			
5	-	0	0	0	+	+	-	-											
6	-	0	+	+	-	-	0	0											
7	-	+		0	-	+	0	+											
8	-	+	0	+	0	-	+	-											
9	-	+	+	-	+	0		0											
10	+		-	+	+	0	0	-											
11	+		0	-	-	+	+	0											
12	+	-	+	0	0	-		+											
14	+	0	-	0	+	-	+	0											
15	+	0	0	+	-	0	-	+											
16	+	0	+	-	0	+	0	-											
17	+	+	-	+	0	+	-	0											
18	+	+	+	-	+	-	- -	- -											
	Ŧ	Ŧ		0	-	U	т	_											

* 18 different product profiles

Simplify, Perfect, Innovate

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Modeling The Drivers of Turnover*

*Adapted from Harvard Business Review article on Boston Fleet Bank, April 2004, pp 116-125

Simplify, Perfect, Innovate

The Value of Transfer Functions

- Provide a <u>simple and compact way of understanding</u> <u>relationships</u> between performance measures or response variables (y's) and the factors (x's) that influence them.
- Allow for the <u>prediction of the response variable</u> (y), with associated risk levels, <u>before</u> any change in the product or process is made.
- Allow for the <u>assessment of process or product capability</u> in the presence of uncontrolled variation or noise.
- Allow the <u>very quick manipulation of complex systems</u> using Monte Carlo Simulation (i.e., Expected Value Analysis) for the purpose of assessing risk.
- Provide a <u>very easy way to optimize performance</u> via robust or parameter design and tolerance allocation.
- Make <u>sensitivity analysis easy</u> and straightforward.
- Greatly <u>enhance one's knowledge</u> of a product or process.
- In general, they are the gateway to systematic innovation.
- Provide a <u>meaningful metric for the maturity in DFSS</u> for any organization.

AIR ACADEMY ASSOCIATES Simplify, Perfect, Innovate

Example: "Time to use" and "Can temp" as a function of "Wall thickness", "CaO mass", and "H₂O volume"

Wall thickness $(X1) \longrightarrow$ CaO mass $(X2) \longrightarrow$ H₂0 volume $(X3) \longrightarrow$ $Y1=f_1(X1, X2, X3)$ $Y2=f_2(X1, X2, X3) \longrightarrow$ $Y2=f_2(X1, X2, X3) \longrightarrow$ $Y1=f_1(X1, X2, X3) \longrightarrow$ $Y2=f_2(X1, X2, X3) \longrightarrow$

How do we find the functions f_1 and f_2 ?

- First principle equations (Physics / Engineering equations)
- Analytical Models (Simulation and Regression) FEA, CFD, etc.
- Empirical models (Design of Experiments)

Design

Empirical Modeling via DOE

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Analytical Modeling via FEA/CFD

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Analytical Modeling with Regression

ATES

Simplify, Perfect, Innovate

FEA / CFD Model

MSC

MSCX

Regression Modeling

Y-hat Model			Response #1	•	• • •	Response #2		• •	Response	#3	• • •	
Factor Const	Nam	10	Coeff -0.45862	P(2 Tail	Activ Activ	Coeff 10.817	P(2 Ta	il) Tol ¥	Coeff	P(2 Tail 0 4975	Tol A	
A	A	Fact	or A	D	0			Deenenee	#1			
В	В	D		0	0			Response -	m I	10	144	275
C	C	Row	# A	В	U			Υl	¥2	۲J	Y 4	Y5
AB			1	-1	-1	-1		-12	-79	4	-1	18
AC			2	-1	-1	1		-63	87	6	83	-63
BC			3	-1	1	-1		-47	57	32	38	68
ABC			4	-1	1	1		-81	74	70	-54	11
				-1	1	4		-01		70	-34	70
00			5	1	-1	-1		71	-09	-31	-50	79
			Б	1	-1	1		62	49	-37	-68	74
	R ²		7	1	1	-1		-55	-67	95	25	31
	Adi		8	1	1	1		-94	-62	54	-95	43
	Std E		9	0	0	Π		96	-66	65	22	41
	F		10	0	0	0		-100	11	95	65	-70
	Sig		10	4	0	0		-100	10		-03	-70
	FLC		11	-1	0	0		25	-16	-03	74	-23
	Sig F		12	1	U	U		45	44	23	-8	- 58
			13	0	-1	0		78	-50	-31	91	-69
	Bogro		14	0	1	0		-18	-54	-3	-43	-75
	Erro		15	Π	n	-1		-90	-30	85	48	73
	Error		16	0	0	1		53	18	94	26	61
	Error	0E I	10344.7	4	2500.2	8845.0	4	-00	20051.2	-34	6512.0	01
	Tota	al I	290055.5	79		271616.0	79		241854.9	3 79		

Prediction

Factor	Name	Low	High	Exper				
A	Wall Thickness	-1	1	-1				
В	CaO Mass	-1	1	-1				
C	H2O Volume	-1	1	-0.943791176				
	Multiple Re	esponse Pro	ediction					
			99% Confidence Interval					
	Y-hat	S-hat	Lower Bound	Upper Bound				
Time to use	13.9460	0.6050	12.131	15.761				
Max can temp	105.0000	1.1425	101.573	108.428				

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Critical Parameter Management and COIs

- A Critical Operational Issue (COI) is linked to operational effectiveness and suitability.
- It is typically phrased as a question, e.g.,

Will the system *detect* the *threat* in a *combat environment* at adequate *range* to allow for successful *engagement*?

DOE Enables Critical Parameter Management (CPM)

CPM is a systems engineering best practice that is extremely useful in managing, analyzing, and reporting technical product performance. It is also very useful in decomposing COIs and developing linkages between measures and task capabilities/system attributes.

"The System Can...."

©2011 Air Academy Associates, LLC. Do Not Reproduce.

DOE Enables the Composition of Functions

©2011 Air Academy Associates, LLC. Do Not Reproduce.

The Optimize Phase

©2011 Air Academy Associates, LLC. Do Not Reproduce.

The DFSS Process: Identify, Design, Optimize, Validate

– The **Identify** Phase

-The DFSS Scorecard

- -Voice of the Customer (VOC)
- The **Design** Phase
 - -Translating the VOC (Requirements Flowdown)
 - -Concept Generation and Selection
 - -Transfer Functions
 - -Critical Parameter Management

-The Optimize Phase

- -Multiple Response Optimization
- -Expected Value Analysis (Monte Carlo Simulation)
- -Parameter (Robust) Design
- -Tolerance Allocation

– The Validate Phase

-High Throughput Testing

Multiple Response Optimization Simulation* Example

* From SimWare Pro by Philip Mayfield and Digital Computations

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Simplify, Perfect, Innovate

Multiple Response Optimization (cont.) Capability Prior to Optimization

Multiple Response Optimization (cont.) Capability After Optimization

DFSS with Monte Carlo Simulation

- Expected Value Analysis
- Robust (Parameter) Design
- Tolerance Allocation

Expected Value Analysis (EVA)

EVA is the technique used to determine the characteristics of the output distribution (mean, standard deviation, and shape) when we have knowledge of (1) the input variable distributions and (2) the transfer functions.

Page 90

Expected Value Analysis Example

What is the mean or expected value of the y distribution? What is the shape of the y distribution?

Parameter Design (Robust Design)

Process of finding the optimal mean settings of the input variables to minimize the resulting dpm.

©2011 Air Academy Associates, LLC. Do Not Reproduce.

ATES

Parameter Design (Robust Design)

Robust (Parameter) Design Simulation* Example

* From SimWare Pro by Philip Mayfield and Digital Computations

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Simplify, Perfect, Innovate

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Tolerance Allocation

©2011 Air Academy Associates, LLC. Do Not Reproduce.

DCIATES

Simplify, Perfect, Innovate

Tolerance Allocation Example

Which resistor's standard deviation has the greater impact on the capability of I?

Tolerance Allocation Example (cont.)

A reduction in R_1 's standard deviation (sigma) significantly reduces the dpm while a reduction in R_2 's standard deviation has a smaller effect.

Tolerance Allocation Table

Process Inputs								
		First	Second					
Factor	Distro	Parameter	Parameter					
R1	Normal	50	2					
R2	Normal	100	4					

N = 10,000 (in	N = 10,000 (in dpm)								
current Table	(Normal dpm) R1	R2							
-50% Sigma	2,897	45,852							
-25% Sigma	21,912	53,427							
-10% Sigma	46,150	58,483							
Nominal	63,975	63,438							
+10% Sigma	88,478	69,198							
+25% Sigma	127,102	83,522							
+50% Sigma	196,089	100,553							

A reduction in R_1 's standard deviation by 50% (from 2 ohms to 1 ohm) combined with an increase in R_2 's standard deviation by 25% (from 4 ohms to 5 ohms) results in a dpm = 9,743.

(This result is not shown in the table.)

Case Study: Optimization Strategy

How do we best set X1, X2, X3 to optimize Y1 and Y2?

- Expected Value Analysis (EVA)
 - a form of Monte Carlo simulation
- Robust Design methods
 - including computer-based Parameter Design
- Tolerance Allocation
 - via computer-based tolerance analysis

Optimize

EVA – Monte Carlo Simulation

Pro	cess	Inputs	Process Outputs					
Factor	Distro	1st Parameter	2nd Parameter	Exper	Name	Function	LSL	USL
Wall Thickness	Normal	0	0.089	0	Time to use	17.05547		17
CaO Mass	Normal	0	0.0765	0	Max can ten	106.9074		107
H2O Volume	Normal	0	0.04123	0				
Noise_Time to use	Normal	0	0.55075436	0				
Noise_Max can temp	Normal	0	0.29526055	0				

Optimize		E	xpected	Value Analysis	Time to use Histogram	Maz can temp Histogram
V	Proce Factor Distro	SS Input First Parameter	S Second Parameter	Process Outputs	Time to use	Max can temp
	Wall Thic Normal	0	0.089	# of Simulations	1,000,000	1,000,000
	CaO Mas Normal	U	0.0765	Mean StdDou	0.5554	0.3073
	Noise Tir Normal	U 0	0.04123		0.5554	0.3073
	Noise_MaNormal	0	0.295261	USL	17	107
				Normal Distro Statistics KS Test p-Value (Normal)	0.211	0.217
				dpm	530,572.305	405,965.585
IR -				Cpk	-0.026	0.079
ADEMY				Ср		
SSOCIATES				Sigma Level	-0.077	0.238
ifu Doufoot Innovata				Sigma Capability	-0.077	0.238

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Simplify, Perfect, Innovate

Parameter (Robust) Design

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Tolerance Allocation

©2011 Air Academy Associates, LLC. Do Not Reproduce.

The Validate Phase

©2011 Air Academy Associates, LLC. Do Not Reproduce.

The DFSS Process: Identify, Design, Optimize, Validate

- The Identify Phase
 - -The DFSS Scorecard
 - -Voice of the Customer (VOC)
- The Design Phase
 - -Translating the VOC (Requirements Flowdown)
 - -Concept Generation and Selection
 - -Transfer Functions
 - -Critical Parameter Management

– The Optimize Phase

- -Multiple Response Optimization
- -Expected Value Analysis Using Monte Carlo Simulation
- -Parameter Design
- -Tolerance Allocation

-The Validate Phase -High Throughput Testing

The Validate Phase

- Validating performance
- Performing sensitivity analysis
- Comparing Predicted capability with actual
- Gap analysis (reasons for lack of confirmation)
- Updating scorecards

Validate

Critical parameters are validated against predictions from models.

Methods may include

- Prototypes
- Lab scale production
- Test-fixturing of subassemblies

If validation is poor gap analysis!

©2011 Air Academy Associates, LLC. Do Not Reproduce.
Introduction to High Throughput Testing (HTT)

- A recently developed technique based on combinatorics
- Used to test myriad combinations of many factors (typically qualitative) where the factors could have many levels
- Uses a minimum number of runs or combinations to do this
- Software (e.g., ProTest) is needed to select the minimal subset of all possible combinations to be tested so that all 2-way combinations are tested.
- HTT is not a DOE technique, although the terminology is similar
- A run or row in an HTT matrix is, like DOE, a combination of different factor levels which, after being tested, will result in a successful or failed run
- HTT has its origins in the pharmaceutical business where in drug discovery many chemical compounds are combined together (combinatorial chemistry) at many different strengths to try to produce a reaction.
- Other industries are now using HTT, e.g., software testing, materials discovery, integration and functionality testing (see example on next page).

Submarine Threat Detection Example

Suppose we want to perform a verification test with the following 7 input factors (with their respective settings):

- •Submarine Type (S1, S2, S3)
- •Ocean Depth (Shallow, Deep, Very Deep)
- •Sonar Type (Active, Passive)
- •Target Depth (Surface, Shallow, Deep, Very Deep)
- •Sea Bottom (Rock, Sand, Mud)
- •Control Mode (Autonomous, Manual)
- •Ocean Current (Strong, Moderate, Minimal)

•All possible combinations would involve how many runs in the test?

If we were interested in testing all pairs only, how many runs would be in the test? Pro Test generated the following test matrix.

Submarine Threat Detection Example (cont.)

The following 15 test cases will test all pairwise combinations.

	Factor_A	Factor_B	Factor_C	Factor_D	Factor_E	Factor_F	Factor_G
Factor Name	Submarine Type	Ocean Depth	Sonar Type	Target Depth	Sea Bottom	Control Mode	Ocean Current
Case 1	S3	Deep	Passive	Very Deep	Mud	Manual	Minimal
Case 2	S1	Very Deep	Passive	Surface	Rock	Autonomous	Strong
Case 3	S2	Shallow	Active	Shallow	Rock	Manual	Moderate
Case 4	S2	Deep	Passive	Deep	Sand	Autonomous	Moderate
Case 5	S1	Shallow	Active	Surface	Sand	Manual	Minimal
Case 6	S1	Very Deep	Passive	Shallow	Mud	Autonomous	Minimal
Case 7	S3	Very Deep	Active	Deep	Mud	Manual	Strong
Case 8	S2	Very Deep	Active	Very Deep	Sand	Autonomous	Strong
Case 9	S3	Shallow	Passive	Shallow	Mud	Autonomous	Strong
Case 10	S3	Deep	Active	Surface	Rock	Manual	Moderate
Case 11	S1	Shallow	Active	Deep	Rock	Autonomous	Minimal
Case 12	S1	Deep	Passive	Very Deep	Rock	Manual	Moderate
Case 13	S2	Very Deep	Active	Surface	Mud	Autonomous	Moderate
Case 14	S3	Deep	Active	Shallow	Sand	Manual	Strong
Case 15	S2	Shallow	Active	Very Deep	Rock	Manual	Minimal

©2011 Air Academy Associates, LLC. Do Not Reproduce.

HTT Applications

- Reducing the cost and time of testing while maintaining adequate test coverage
- Integration and functionality testing
- Creating a test plan to stress a product and discover problems
- Prescreening before a large DOE to ensure all 2-way combinations are feasible before discovering, midway through an experiment, that certain combinations are not feasible
- Developing an "outer array" of noise combinations to use in a robust design DOE when the number of noise factors and settings is large

Requirements Flowdown Using QFD

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Case Study: Validation

Critical parameters are validated against predictions from models.

Validate

Methods may include

- Prototypes
- Lab scale production
- Test-fixturing of sub-assemblies

3rd HOQ: Physical Domain → Process Domain

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Page 114

4th HOQ: Process Domain -> Process Control

©2011 Air Academy Associates, LLC. Do Not Reproduce.

 $\overline{\Lambda}$

Methods & Tools Used in Case Study

	QFD Axiomatic Design		TRIZ Analytical Modeling LSS/DFSS & Simulation				
Identify	VOC HOQ1 CTCs (FPs)	CUSTOMER DOMAIN ♦ FUNCTIONAL DOMAIN	8 PATTERNS SYSTEMS VIEW		SURVEYS INTERVIEWS FOCUS GROUPS PAIRWISE COMPARISON BASES		
Design	CTCs (FPs) HOQ2 DPs	FUNCTIONAL DOMAIN (VIA AXIOMATIC DESIGN) PHYSICAL DOMAIN	FUNCTIONAL MODEL TC & PC ALGORITHMS RESOURCES	FEA, CFD:	Functional Analysis System Technique (FAST)		
Optimize	DPs	INDEPENDENCE & INFORMATION OPTIMIZATION (DECOUPLING)	FUNCTIONAL MODEL TC & PC ALGORITHMS	FLUENT COSMOS	DOE / EVA MONTE CARLO / DS PARAMETER DESIGN TOLERANCING		
Validate	DPs HOQ3 PPs	PHYSICAL DOMAIN ★ PROCESS DOMAIN	TC & PC ALGORITHMS	CONFIRMATION	HYPOTHESIS TESTS CONFIRMATION		
Mfg.	Ifg. PPs PROCESS DOMAIN HOQ4 PROCESS CONTROL		TC & PC ALGORITHMS		SPC CONTROL PLANS POKA YOKE		
implify, Perfect, Innovate	D11 Air Academy Associates, LLC. Do Not Reproduce. Page 116						

©2011 Air Academy Associates, LLC. Do Not Reproduce.

The Original DFSS (Design for Six Sigma)

Design for Successful Systems (DFSS_o+DFR)

Evolution of Design for Successful Systems

(DFSS_o + DFR + FAST/FMEA)

MBT&E with Design for Successful Systems

©2011 Air Academy Associates, LLC.

Page 120

Steps for Designing the Test and Evalution*

Tools and Methods from DFSS that can help accomplish these steps are in parentheses:

- Develop the measures of effectiveness from the task capabilities and the measures of performance from the system attributes. (HOQ 1)
- Determine the operational factors and conditions. (HOQ 2)
- Develop linkages between measures and COIs. (CPM)
- Complete linkages from measure-to-system-to-task. (CPM)
- Assign one or more data sources to each evaluation measure. (HOQ 5)
- Determine the operational conditions that can or cannot be addressed by the identified data sources. (HOQ 2, CPM, and HOQ 5)
- Develop detailed measure design. (HOQ 6)
- Develop design of experiments. (HOQ 2, CPM, HOQ 5, HOQ 6)

* These steps are taken from Chris Wilcox's MBT&E Tutorial (page 25) at NDIA T&E 2010.

DFSS Success Stories

Partial Listing of Who Has Used Our DFSS Process and Tools

- Xerox
- Gates Rubber Company
- Hyundai
- Timken
- GE Medical Systems
- Medtronic
- St. Jude Medical
- Sony
- John Deere
- Delphi
- Sensis

Simplify, Perfect, Innovate

Nokia

- Bose Corporation
- PerkinElmer
- Samsung
- •ATMI
- Pollak Industries
- Sandia National Laboratory
- Abbott Laboratory Diagnostics
- GlaxoSmithKline
- General Dynamics Land
 Systems

GEMS LightSpeed[™] CT Scanner

<u>GE's First DFSS System ('98):</u> <u>Full Use of Six Sigma/DFSS Tools</u>

- Key customer CTQs identified
 - Image quality
 - Speed
 - Software reliability
 - Patient comfort
- Disciplined systems approach: 90 system CTQs
- 33 Six Sigma (DMAIC) or DFSS projects/studies
- Scorecard-driven
- Part CTQs verified before systems integration

Leading-Edge Technology

- World's first 16-row CT detector
- Multi-slice data acquisition
- 64-bit RISC computer architecture
- Long-life Performix[™] tube

Simplify, Perfect, Innovate

<u>Results</u>

Better image quality

- Earlier, more reliable diagnoses
- New applications; vascular imaging, pulmonary embolism, multi-phase liver studies,...
- Much faster scanning:
 - Head: from 1 min to 19 sec (9 million/yr)
 - Chest/abdomen: from 3 min to 17 sec (4 million/yr)
- Clinical productivity up 50%
- 10x improvement in software reliability
- · Patient comfort improved shorter exam time
- · Development time shortened by 2 years
- High market share; significant margin increase

"Biggest breakthrough in CT in a decade," Gary Glazer, Stanford

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Page 124

GE's Six Sigma/DFSS Financial Benefits: '96 - '00

Major impact on the bottom line Significant benefits from customer delight, including DFSS

©2011 Air Academy Associates, LLC. Do Not Reproduce.

Page 125

Xerox Develops New Paper

Wall Street Journal: Xerox Develops a 'Green' Paper, But Will Firms Add it to Fold? By William M. Bulkeley July 30, 2007; Page B3

Xerox has invented an environmentally friendly copy paper that costs less. The new cut-sheet "High-Yield Business Paper" requires half as many trees, fewer chemicals and less energy to manufacture and it weights less, reducing postage and trucking costs. Merilyn Dunn of InofTrends suggests the paper will be used for transactions such as invoices and phone bills where people don't care about long-term archiving of documents. Xerox and others have tried to use cheap newsprint in copiers and laser printers in the past, but "you always had catastrophically bad results related to the curl in a digital printer," said Steve Simpson, Xerox's vice president in charge of paper and supplies. Bruce Katz, a paper technologist in Xerox's research facility in Webster, said he was able to overcome the curling problem by figuring out how to make cellulose fibers in the paper line up evenly, so they would shrink at the same rate when the toner fusing process took place.

Note: Bruce Katz, a Xerox DFLSS GB, used the DesIgNNOVATION™ methods to accomplish this.

Page 126

Photoreceptor Belt Tensioning System

iSixSigma Magazine July/August 2007, pp 47-55 By Bob Hildebrand, Xerox DFLSS Black Belt

The Xerox Corp. designs, manufactures and markets iGen3, a color printer that can produce photo-quality prints at 110 pages per minute. When the current iGen3 was to be modified, the engineering team was tasked with redesigning the belt tensioning mechanism on the photoreceptor into a smaller package without adjusting the length of the belt. The redesign had to take several noise factors into account. The outcome of the project was a design that met the constraints placed on it by the system. This IDOV project is a practical example of how Design for Lean Six Sigma (DFLSS) can bring about the best option available in a constrained design.

Please see the referenced article for a detailed presentation of this case study.

Page 127

Some Results From Other DFSS Studies

Accelerated Testing of a Proprietary Product

Time to qualify process changes reduced from a year to 5 weeks – 860% test cost reduction
 5 years benefit of \$48.5M based on accelerated placement of lower cost units

Regression Analysis to Predict Life of a Proprietary Product

- \$2M ∆NPV Improvement
- 24 hours to develop right material
- Overall length of project: 3 months (vs. 2 years using traditional approach)

- Life expectancy improvement: over 4x!

Modeling to Reduce Development Costs and Improve TTM

- Matured the new design to last for >5 Million cycles in 6 months
- Demonstrated that following DFSS can accelerate Time to Market
- Established the importance that all QMS parts go through the DFSS process

Identifying Critical Parameters

- 25% cost reduction of part: \$3M savings
- Leveraged the new accurate measuring process across product lines
 - Short term solution in two months, long term took a year

Supply Problem Resolution Using Simple Hypothesis Testing

- \$2M immediate savings and saved the product from being withdrawn from field
 - Took just four months to resolve a problem that had lingered for 10 years
 - Gained control of infant mortality (i.e., failures within first 6 months)

AIR ACADEMY ASSOCIATES Simplify, Perfect, Innovate

Using DFSS to Improve Reliability Growth

FEF = Fix Effectiveness Factor

Historical data from reliability growth models indicates an overall average of .7 (Source: Larry Crow's RAMS 2011 presentation, page 68)

Using a DFSS FEF of at least .9, we can see that the number of iterations can be reduced substantially to achieve the same goal.

	FEF = .7	FEF = .9
Start	1,000,000	1,000,000
After 1 st Iter.	300,000	100,000
After 2 nd Iter.	90,000	10,000
After 3 rd Iter.	27,000	1,000
After 4 th Iter.	8,100	100
After 5 th Iter.	2,430	10
After 6 th Iter.	729	1
After 7 th Iter.	218	.1
After 8 th Iter.	65	.01
After 9 th Iter.	20	.00

1

For More Information, Please Contact

Mark Kiemele Air Academy Associates, LLC 1650 Telstar Drive, Ste 110 Colorado Springs, CO 80920

Toll Free: (800) 748-1277 or (719) 531-0777 Facsimile: (719) 531-0778 Email: <u>aaa@airacad.com</u> or <u>mkiemele@airacad.com</u> Website: www.airacad.com

